
AD-A132 326 ISSUES IN THE DESIGN AND IMPLEMENTATION OF ACT2(U)
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB D G THERIAULT JUN 83 AI-TR-728

UNCLASSIFIED N00014-80-C-0505 F/G 9/2

"J

NL

0 ;-i^ |25

S «*» 1 •^ 12.2

I.I.

L25 11.4

2.0

1.8

1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUHUU OF STANDARDS 1963«

«^1
--• •— - - *-

L

Technical Report 728

CO

Issues in the Design
I T , and

Implementation
of Act2

C3

Daniel G. Theriault
Artificial Intelligence Laboratory

DISTRIBUTION STATEMENT A

Approved for public release!
Distribution Unlimited

s
DTIC
ELECTE

SEP 1 ; 863

L
D

83 08 23 ©9 8

HMHW^BiHMBiBWWWBWHPIMBMMM0IHMBMHBHBIHII^^^H|

HIHMBBIIHUI

UNCLASSIFIED
SECURITY CLASSIFICATION OF TMIS PAGE rl*>ian Data Enfar.d;

REPORT DOCUMENTATION PAGE
t REPORT NUMBER

AI-TR 728

2 GOVT ACCESSION NO

A o-/\r^x':
* TITLE 'and Submit)

Issues in the Design and Implementation of Act 2

7. AUTHOR«-»;

Daniel G. Theriault

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Artificial Intelligence Laboratory
5^5 Technology Square
Cambridge, Massachusetts 02139

I». CONTROLLING OFFICE NAME AND AOORESS

Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

14 MONITORING AGENCY NAME a AOORESSf// dlllarmnl from Controlling Olllca)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 RECIPIENT'S CATALOG NUMBER

±L
s. TYPE OF REPORT a PERIOD COVERED

Technical Report

«. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERC»

N0014-80-C-0505

10. PROGRAM ELEMENT, PROJECT. TASK
AREA ft. WORK UNIT NUMBERS

12. REPORT DATE

June 1983
U. NUMBER OF PAGES

213
IS. SECURITY CLASS, (ol Ihlm rapori;

UNCLASSIFIED

ISa. OECLASSlFICATION DOWNGRADING
SCHEDULE

«6. DISTRIBUTION STATEMENT (ol thlt Rapon;

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (ol th» mb,tract an'arad In Block 20, II dltlmrmnl Irom Raport)

I». SUPPLEMENTARY NOTES

None

19. KEY WOROS (Continue on ravaraa ltd» II nacaaaary and Idanllly by block numb«)

Actor Languages
Description and Action
Computer Programming Languages
Message Passing Semantics

Open Systems
Concurrent Systems
Distributed Systems
Parallelism

20. ABSTRACT (Continue on ravaraa alda It nacaaaary and Idmntlly by block numbarj

Act2 is a highly concurrent programming language designed to exploit the proce
sing power available from parallel computer architectures. The language sup-
ports advanced concepts in software engineering, providing high-level constructs
suitable for implementing artificially intelligent applications. Act2 is
based on the Actor model of computation, consisting of virtual computational
agents which communicate by message-passing. Act2 serves as a framework in
which to integrate an actor language, a description and reasoning system, and
a problem-solving and resource managempnf system. This document describes

DD , :°:M73 1473 EDITION OF I NOV «S IS OBSOLETE
S/N 0102-014- 6601

UNCLASSIFIED
StCURlTV CLASSIFICATION OF THIS PAGE fWhan Dafa Bntarad)

 - • •--

1 • "" —

issues in Act2's design and the implementation of an interpreter for the language,

Accession For

NTIS GRAScI ^3<
DTIC TAB CV
Unannounced
JustIf1cation.

a

By __
distribution/

Availability Codes
Avail and/or

Dist Special

ft

rn^rnrn J-'-^*i" • '• - —'-

r
Issues in the Design and Implementation of Act2

by

Daniel Gary Theriault

Massachusetts Institute of Technology

June 1983

© Massachusetts Institute of Technology 1983

This report describes research done at the Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the research reported on in this

paper was provided primarily by the System Development Foundation. Support for

the Artificial Intelligence Laboratory is provided m part by the Advanced Research

Projects Agency of the Department of Defense under Office of Naval Research

contract N0014-80-C-0505.

«Ml _
— .-»in »> A-4 . ii m

r
Issues in the Design and Implementation of Act2

by

Daniel Gary Theriault

Revised version of a thesis submitted to the
Department of Electrical Engineering and Computer Science

on May 6,1983 in partial fulfillment of the requirements
for the Degree of Master of Science

Supervised by Professor Carl E. Hewitt

Abstract

Ac(2 is a highly concurrent programming language designed to exploit the
processing power available from parallel computer architectures. The language
supports advanced concepts in software engineering, providing high-level constructs
suitable for implementing artificially-intelligent applications. Act2 is based on the
Actor model of computation, consisting of virtual computational agents which
communicate by message-passing. Act2 serves as a framework in which to integrate
an actor language, a description and reasoning system, and a problem-solving and
resource management system. This document describes issues in Act2's design and
the implementation of an interpreter for the language.

 •

11"" «•

Acknowledgments

I would like to take this opportunity to shower my thanks on Carl Hewitt, my

thesis advisor, for his help in making this thesis a reality. He provided a wealth of

ideas and encouragement. My wife, Candace, provided moral support and helped

massage drafts into more coherent forms, for which I will be forever grateful. I hope

1 will be able to make up for this period of intense suffering during the years ahead.

I'd like to extend special thanks to Henry Lieberman and Jonathan Amsterdam for

their implementation of Scripter and an Apiary, without which an Act2 interpreter

would remain a dream. Peter de Jong, Carl Mikkelsen, Gene Ciccarelli, Dan Weld,

Roy Nordblom, and Priscilla Cobb also played essential roles in forming that

dynamic (and unique) environment called the Message Passing Semantics group.

This thesis would have been impossible without the solid foundation of Carl

Hewitt's work, Henry Ueberman's implementation of Actl, Jeff Schiller's work on

ApiaryO, Bill Kornfeld's Ether, and work on Omega by Jerry Barber, Beppe Attardi,

and Maria Simi. I owe a debt of gratitude to Charles Smith and the System

Development Foundation for their financial support

^_ ta

•*" "•
-

To my wonderful wife, Candace.

yii • i mi»—— -—*-- ' - -'

'

Preface: A Guide to this Document

The organization of this document was part of an attempt to satisfy a variety of

audiences. When possible, essential information is encapsulated in a convenient

location, to be studied or ignored as a whole. The main body of the document

describes the historical setting in which Act2 materialized, the creation process, and

a rationale for its design. The appendices generally describe the language itself, and

serve as reference material.

Chapter One describes the context in which Act2 was built, including the

foundation of previous work upon which it stands. Chapter Two is an

impressionistic introduction to the language itself, making use use of canonical

examples. At this point, interested readers may browse through the appendices in

order to become more familiar with the language before pushing on. The following

chapters assume a familiarity with the language and a willingness to refer to

appendices for details of the language's syntax and semantics. Chapter Three relates

the design and development strategies used to produce Act2. Chapter Four

discusses issues considered important in Act2's design. It is the backbone of the

document's body. Chapter Five touches on implementation issues and mechanisms,

and Chapter Six wraps up w ith a summary and conclusions.

Appendix A contains a glossary for help in decoding actor jargon. Appendix

B presents a sample of conversational interaction with Acl2. Appendix C informally

describes the syntax and semantics of Act2, construct by construct. Appendix D is a

more formal description of the language, in the form of an Act2 implementation of

itself. It is useful for resolving ambiguities in the natural language descriptions of

Act2, and for understanding the general strategics used in its implementation.

Mann —

———._

Appendix h describes pre-defined names and actors which come with an installation

of Act2, as well as some standard communication protocols which they use.

Appendix F discusses a few more language issues considered too distracting or

unimportant for Chapter Four.

__. i

Table of Contents

Preface: A Guide to this Document 5

Chapter One: Conceptual Framework 13

1.1 The Actor Model of Computation 15
1.1.1 Actors 15
1.1.2 Transactions 17

1.2 Plasma 19
1.3 Actl 19
1.4 Omega 21
1.5 Ether 23
1.6 ApiaryO 26
1.7 Integration 28

Chapter Two: Introductory Examples 30

2.1 A Simple Recursive Factorial Actor 30
2.2 A More Concurrent Factorial Actor 32
2.3 A Simple Bank Account Actor 34
2.4 A New Control Abstraction 35

Chapter Three: The History of Act2 38

3.1 A Meta-Circular Description of Act2 40
3.1.1 Perspective 40

3.2 A Toy Language Implementation Experiment 42
3.2.1 Act2 Implementation 48

Chapter Four: Issues in the Design of Act 2 50

4.1 Act2 is Part of a Layered Implementation 50
4.1.1 Act2 Assumptions 51
4.1.2 Act2 Design Goals 52

4.1.2.1 Integration as a Design Goal 53
4.1.2.2 Expressive Power as a Design Goal 53
4.1.2.3 Expressiveness as a Design Goal 54

4.2 Programmer Interaction 54

— •- •

r — -

4.2.1 Interactiveness 55
4.2.1.1 Actor-Based interpretation 56

4.2.2 A\ct2 Separates Syntax from Semantics 57
4.2.2.1 Presentation and Editing Tools 57

4.2.3 Syntactic Issues 58
4.2.3.1 Bracketed Syntax 58
4.2.3.2 Template English 58
4.2.3.3 Verbosity 59
4.2.3.4 Keyword-Based versus Positional Instantiation 61
4.2.3.5 Extensibility 62

4.2.4 The Expressive Character of Act2 63
4.2.4.1 Familiarity 63
4.2.4.2 Economy of Concept 64
4.2.4.3 Uniformity 64
4.2.4.4 Programmer Productivity Supported by High-Level 65

Constructs
4.2.4.5 Abstraction and Extension 66

4.3 Act2 has Actor Semantics 67
4.3.1 Act2 is Actor-Based 67

4.3.1.1 Representation Abstraction 68
4.3.1.2 Absolute Containment 68

4.3.2 Modularity 69
4.3.3 Message Passing Semantics Permeate Act2 70

4.3.3.1 Primitive Actors use Message Passing Semantics 70
4.3.3.2 Actors Implemented in Act2 have Actor Scripts 71
4.3.3.3 Programs as Data 71

4.3.4 Transactions 72
4.3.4.1 Customer Chains versus Execution Stacks 73
4.3.4.2 Complaint Handling 73

4.3.5 Inherent Concurrency 75
4.3.5.1 Local versus Global State Change 76
4.3.5.2 Local Binding versus Assignment 76
4.3.5.3 Concurrent Commands and Shared Resources 76
4.3.5.4 Concurrent Evaluation and Explicit Sequencing 77
4.3.5.5 Resource Management 78

4.4 Acl2 Integrates Description and Action 78
4.4.1 Coexistence of Mechanisms for Description and Action 78

4.4.1.1 Abstract Syntax for Description and Action 80
4.4.2 The World of Action 81

4.4.2.1 Change 81

 i ii—ii

' "

4.4.2.2 Local Changes versus Global State Changes
4.4.2.3 Maintaining Computation Histories

4.4.3 Descriptions as Information Containers
4.4.4 Description of Actors: Data-typing and Specification

4.4.4.1 Description of Actors
4.4.4.2 Behavioral Types
4.4.4.3 Controlling Visibility

4.4.5 The Many Uses of Pattern Matching
4.4.5.1 Pattern-Directed Recognition and Extraction
4.4.5.2 Security
4.4.5.3 Polymorphism
4.4.5.4 Authentication

4.5 Act2 and Open Systems
4.5.1 Suitability foi Open Systems
4.5.2 Synergy

Chapter Five: Implementation Issues and Mechanisms

5.1 Bottoming Out
5.1.1 Rock-Bottom Actors
5.1.2 Scripts
5.1.3 Communications
5.1.4 Instance and Atomic Descriptions

5.2 Extensibility from a Listen-Loop
5.3 Providing both Positional and Keyword-Based Instantiation
5.4 Making Composite Constructs Work
5.5 Serialized and Unserialized Actors
5.6 Missing Information
5.7 Actors and Types
5.8 Making Pattern-Matching Work
5.9 Compilation
5.10 The Ubiquitous Atomic Description

Chapter Six: Conclusion

6.1 Summary
6.2 Design Philosophy
6.3 Future Work

81
82
82
83
83
83
84
84
85
85
86
86
87
87
89

91

91
92
93
93
94
96
97
98
100
101
103
104
105
106

108

108
110
111

Appendix A: Glossary 113

Appendix B: A Sample Session with Act2 119

Appendix C: Act2 Language Description 124

C.l The Actor Model of Computation 124
C.2 A Glimpse of Act2 126
C.3 Pre-Defined Actors 127

C.3.1 Symbols 128
C.3.2 Numbers 128
C.3.3 Boolean Values 128
C.3.4 Sequences 129
C.3.5 Convenient Expression of Bas'c Operations 129

C.4 Descriptions 130
C.4.1 Atomic Descriptions 130
C.4.2 Instance Descriptions 131
C.4.3 Pattern Matching 133

C.5 Top-Level Expressions 137
C.5.1 DEFNAME Expression 138
C.5.2 DEFCONCEFr Expression 138
C.5.3 DEFINE and NEW Expressions 139

C.6 Simple Expressions 140
C.6.1 ASK Expression 140
C.6.2 QUOTE Expression 141
C.6.3 PARSE-EXPRESSION and PARSE-COMMAND Expressions 141

C.7 Creating Actors 142
C.8 Simple Context-Free Commands 146

C.8.1 REPLY-TO Command 146
C.8.2 COMPLAIN-TO Command 147
C.8.3 SEND-TO Command 147

C.9 Composite Constructs 148
C.9.1 LET Construct 148
C.9.2 LABEL Expression 149
C.9.3 Interpretation of Command Bodies 149
C.9.4 ONE-OF Construct 150
C.9.5 IF Construct 151
C.9.6 CASE-EOR Construct 151

CIO Context-Sensitive Commands 153
C.10.1 REPLY Command 153
C.l0.2 COMPLAIN Command 155
C.10.3 BECOME Command 155

10

•••'• —

 WH
"••"'• "•""

C. 11 Other Commands 157
C.ll.l CONCURRLNI and SEQUENTIAL Commands 157
C.11.2 HANDLE-COMPLAINTS Command 157
C.11.3 USING-SPONSOR Construct 158
C.l 1.4 Comments 159

C.12 Syntactic Extension 159
C.12.1 DHLLXPRESSION Expression 160
C.12.2 DEFCOMMAND Expression 162

Appendix D: A Meta-Circular Description of Act2 163

D.l Primitive Actors 163
D.2 Simple Expressions 165
D.3 Variable Binding 166
D.4 Abstraction 168
D.5 Extending Listener's Environment 170
D.6 Creating Instance Descriptions 170
D.7 Creating Actors 172
D.8 Simple Commands 173
D.9 Composite Constructs 175

D.9.1 Case-for Construct 175
D.9.2 One-of Construct 178
D.9.3 Let Construct 180
D.9.4 Other Constructs 182

D.10 Subsidiary Abstractions 183
D.10.1 Environments and Layers 183
D.10.2 Atomic Descriptions 184
D.10.3 Instance Descriptions 186
D.10.4 Serializes 189
D.10.5 Evaluating Composite Expression Bodies 194
D.10.6 Evaluating Communication Handler Bodies 195
D.10.7 Evaluating a Command Sequence 196

Appendix E: Pre-Defincd Names, Actors, and Protocols 197

E.1 Common Protocol for All Actors 199
E.2 Surface Syntax Actors 199
E.3 Parsers 200
E.4 Abstract Syntax Actors 201
E.5 Environments and Layers 202
E.6 Rock-Bottom Numbers 202

11

.. ^
.

--• — — -- •- •••—• • i — -- •

E.7 Symbols
E.8 Sequences and Lists
E.9 Atomic Descriptions
E.10 Instance Descriptions

Appendix F: Other Language Issues

F.l Lexical Scoping
F.2 Aliasing
F.3 No Identifier Lifetime Problems
F.4 Context Sensitivity
F.5 Compilation fits into Interactive Framework

203
203
203
204

205

205
205
206
207
208

12

!

r
Chapter One

Conceptual Framework

The recent history of Computer Science shows significant advances in

computer software and hardware engineering. Increasingly sophisticated and

complex software application systems are being designed and implemented,

especially in the area of Artificial Intelligence. Requirements for software have

grown to include open systems, in which autonomously owned and independently

conceived software systems communicate and cooperate. Modern programming

languages may exploit the increased parallelism afforded by hardware and support

the software engineering principles and practices for reduction of complexity in

designing and implementing software systems.

These trends were anticipated by [Hewitt 77, Hewitt and Smith 75], which

proposed a novel computational model, based on virtual computational agents

called actors. The actor model was abstraction-oriented, processor-independent,

and inherently concurrent. Languages realizing this model are intended to exploit

parallelism available in future computer architectures.

The first actor language, Plasma, was essentially an experiment to determine

whether it was possible to construct a language based on the actor model of

computation. Though Plasma was a useful language in itself, its design and

implementation pointed out the fact that more needed to be learned about actor-

based languages with advanced features suitable for Artificial Intelligence

applications. It also pointed out that trying to solve the whole problem at once was

not a practical approach; that it may be more wieldy to decouple some of the issues

13

-" - i Hi immmv^^m{ ^••HkMM.

L

and mechanisms bv, experimenting with different aspects of the problem mare

independently.

The Actl programming language [Lieberman 81a] was a direct realization of

the actor computational model, ft was an experiment in the use of actors and in

expressing their behavior and communication among them. The Omega description

and deduction system [Barber 82, Hewitt, Attardi, Simi 80] was an experiment in

knowledge representation and manipulation mechanisms useful for languages

implementing artificial intelligence applications. Ether [Kornfeld 79] was a

reasoning system for solving problems in much the same way they are solved by

scientific communities. It dealt with the creation and management of independent

problem solvers cooperating to establish or refute common goals. ApiaryO [Hewitt

80] was a design for a computer architecture consisting of a large number of

independent processors interconnected with high-bandwidth links. The computer

architecture itself was responsible for services such as storage management,

transmission of communications, migration of actors, and load-balancing.

Languages built of top of an Apiary can ignore such issues.

Many new ideas and insights were acquired in the design and development of

each of these experimental systems. Now that they have been completed, the time

has come to integrate these ideas and others developed independently into a single,

more sophisticated programming language: Prelude.

The Act2 programming language is the first step in implementing Prelude. It

blends basic ideas, mechanisms, and philosophies from Actl, Omega, and Ether in a

single programming language. They arc not simply juxtaposed, but permeate the

language through to its foundation. Act2 itself does not fully implement the more

sophisticated aspects of Omega and Ether, but is extensible in a manner such that

the rest of Prelude can be embedded within it.

14

i t. .. ^atgm^ltttj42miLimimtJittammam-, n ,„ 1^Li ±

Our implementation of Act2 runs on Lisp Machines [Wcinreb and Moon 81].

It is written in Scripter [Lieberman 83], a language embedded in Lisp Machine Lisp,

tailored for expressing actor computations.

1.1 The Actor Model of Computation

Early computational models were significantly more machine-oriented than

the actor model. Early languages implicitly had a model in which computation

progressed as a succession of modifications to a global machine state. Both the

existence of a set of fixed-size storage locations and a set of machine instructions

showed through to the language level. Data structures were mapped onto sets of

contiguous storage locations. Procedures were developed to encapsulate a series of

primitive operations, procedure calls, and state changes as a single abstract

operation. Object-oriented languages abstracted away the structure of the store. An

object consisted of some storage and primitive operations with which to access and

manipulate this concrete representation. Though encapsulating the representation

of data types was a tremendous advancement, the underlying computational

paradigm was still that of sequentially modifying a global state. Advancements in

hardware technology have provided increasing amounts of parallelism for

programming languages to exploit. Languages based on the old computational

models arc inherently sequential, and need special attention to exploit parallelism.

1.1.1 Actors

The actor model of computation [Hewitt and Baker 78] is one in which many

active, self-contained computing entities, called actors, process communications in

parallel. Each actor has its own processing power and storage. Instead of having a

notion of control flow, the actor model makes use of a more flexible idea of

15

khu

cooperation; of* communication among entities which are under their own control.

Acini's interact by transmitting information in communications to each other.

An actor is a mathematical abstraction [Clinger 81a]. It is self-contained and

opaque in the sense that its internal composition cannot be directly seen or

manipulated by other actors. They are restricted to sending communications to the

actor and observing whatever communications the actor might send in reply. Only

the actor itself can access its underlying representation. It also is responsible for

how it reacts to any communication; it may even choose to request authentication,

request additional computing resources, or reject the communication altogether. An

actor is an encapsulation mechanism providing information-hiding capabilities,

which are a corner stone of good software engineering.

Each actor has a script, which determines what communications it can accept

and what computations it will perform upon receiving each. It may also have some

acquaintances, which are other actors it can directly communicate with as it

processes a communication. An actor's behavior is uniquely characterized by its

script and acquaintances. When it accepts a communication, an actor can make

simple decisions, create new actors, send communications to its acquaintances (or to

itself), and designate an actor to serve as a replacement for itself.

One of the effects an actor can cause is the replacement of itself by another

actor. It becomes indistinguishable from the replacement actor, which processes any

future communications for the actor. Serialized actors, or serializers, are actors

which may change. Unserialized actors are actors whose behavior includes no

provision for change. The distinction is a very important one. Because a serializer

may change as a result of processing a communication, it can only process one

communication at a time. For this reason, the order of arrival of communications is

important for serializers.

16

i •_l
IU.

r

_

Unserializcd actors, on the other hand, can change neither their behavior nor

their acquaintances, and as a result can process communications concurrently.

Arrival ordering does not matter, because behavior does not change. Unserialized

actors can also be copied arbitrarily, because lack of change will make the copies

indistinguishable.

1.1.2 Transactions

Communications are also actors. There are three kinds of communications,

representing the major forms of communication in transactions among actors. Each

communication has a message acquaintance containing information for the target

actor. An actor can send a request communication to another, asking it to cause

effects or provide information of some form. After the request has been successfully

fulfilled, some actor will eventually respond to the request with a

reply communication. Otherwise, the response is a complaint communication

containing a message, which says why the request could not be successfully

processed. We refer to replies and complaints collectively as responses.

Transmission of communications is one-way, asynchronous, and buffered.

Concurrent activities can be spawned simply by transmitting more than one

communication when processing a communication. The sender does not wait for

the receiver (or target) to be ready to receive a communication; instead, the

communication is enqueued for reception by the receiver. If the receiver is

serialized, arrival order is preserved in a first-in, first-out queue. The sender of a

request does not wait for a response from the receiver, because all communication is

one-way. Instead, the sender includes in the request a customer, an actor to which a

reply can be sent. It also includes a complaint department, to which a complaint can

be sent, in the event that the request cannot be satisfied. When an actor sends a

request to another actor, it includes in the request a customer and complaint

17

 • • 2' . <•«•

r • • "•-•• ••"• •-• •

department, which arc responsible tor completing the computation. While this

computation continues, the actor might begin processing another communication.

See [Kerns 8U] for a rigorous definition of transactions.

Computation is event-driven. An event happens when an actor accepts a

communication for processing. An actor only consumes computing resources when

it processes a communication. An event is machine-independent, because all of the

information necessary to process it is present in the incoming communication and

target actor — its behavior and acquaintances. A transaction begins by sending a

request to some actor, which might send communications to other actors.

Eventually, an actor might reply to the original customer or complain to the original

complaint department.

Because of its emphasis on communication, the actor model of computation

unifies the ideas of procedural, data, and control abstraction developed by languages

using other models. For example, a data abstraction, such as a checking-account,

can be embodied in an actor with an acquaintance that serves as a current balance

and with a behavior that responds appropriately to requests for deposits,

withdrawals, and balances. A procedural abstraction, such as factorial, can be

embodied in an unserialized actor which accepts a request containing an integer,

performs a computation (possibly asking itself for the factorial of other integers),

then replies with the result. Control abstractions such as recursion, iteration, back-

tracking, tree traversal, etc. can be embodied in actors which send each other

appropriate communications.

18

-

1.2 Plasma

Plasma was the first actor language. As the first language design endeavor

using the actor model of computation, it made some progress in implementing and

developing the model. At that time, the actor model was in its infancy, and

advancements have since been made, thanks to experiments such as Plasma and

Actl.

Plasma had basic facilities for transmitting communications, but did not

formally distinguish requests, replies, and complaints as different kinds of

communications. It incorporated the ideas of expressing control structures as

patterns of message-passing, and of unifying the notions of data structures and

procedures by concentrating on communication. The language had simple data

structures such as numbers and simple constructors like sequences and packagers.

Packagers were similar to record structures in languages such as Pascal, allowing the

encapsulation of a set of labeled actors, but lacked the flexibility and power of

instance descriptions developed in Omega. ITiough Plasma did acknowledge the

need for change, the idea of serializers had not yet been conceived and formalized.

1.3 Actl

Actl was a programming language which directly realized the actor model of

computation [Licberman 81a, I.ieberman 81b]. It was implemented in Maclisp for

PDP10, as an experiment in implementing an actor language which uses the

message-passing paradigm down to the level of primitive actors, such as numbers

and lists. It helped formalize common patterns of message-passing and useful types

of communications, as well as the notion of change in actors. As an experimental

language, it was unencumbered with mechanisms such as those in Omega and Fther.

which provide sophisticated services for the programmer. It provided mechanisms

19

'—

for creation of actors and for point-to-point communication between actors. It

allowed an actor to delegate its incoming communications to another actor for

handling.

Actl allowed a programmer to write programs which appeared to have two-

way communication between actors, and translated such expressions into requests

with appropriate customers and complaint departments.

Actl provided constructs for sending arbitrary communications to actors. It

also provided constructs for actors to change their behavior, and provided explicit

synchronization primitives to avoid problems of change. Actl also provided a

notion of a guardian, an actor which could accept requests, store away state

information, then reply to their customers at some later time.

Sub-expressions in Actl were evaluated sequentially. However, Actl

provided the following constructs for lazy and eager evaluation of expressions:

(delay expression)
(hurry expression)

When evaluated, the hurry expression would create and reply with a future,

which was an actor representing the value of the expression inside the hurry

expression. A newly-spawned process would evaluate that expression concurrently

with whatever activity occurred once the future was returned. If die future ever

became inaccessible, the process computing the expression's value could be garbage-

collected. If any communications were sent to the future actor, it would enqueue

them, then send them to the result of the expression, once its evaluation terminated.

In addition, Actl had the notion of a race for concurrent activity. Given a list

of expressions to be evaluated, a result list was immediately provided. As results

became available, they were appended to the list asynchronously. An actor with

20

MNMMM^

—:

such a race in ils possession could appl> the standard fust and resi operations on it.

Synchronization was done by the race, so that if results were not yet available, it

would wait for them before responding. If the race became inaccessible, it along

with the processes still computing for it would be garbage-collected.

Actl had primitive actors, such as numbers and symbols. It also had

constructors, like sequences. It had a form of constructor, called a package, which

resembled Plasma packagers and behaved in essentially the same manner. Pattern-

matching was performed as a structural correspondence between the pattern and

object of the match.

1.4 Omega

Omega [Hewitt, Attardi, Simi 80, Attardi, Simi 81, Barber 82]is a system for

representing knowledge in general, reasoning about knowledge, and retrieving

information from a knowledge base. It represents knowledge as

descriptions representing abstract concepts and individuals, and as relationships

among those descriptions.

The simplest form of Omega description is an atomic description, such as

real-number, complex-number, 12, man, animal, or Jack. These represent abstract

concepts or individuals in a model of some world.

An instance description represents some collection of individuals which are

instances of some abstract concept. It can also be thought of as representing any

individual in such a collection. Examples of simple instance descriptions include:
(a real-number)
(a complex-number)
(a man)
(an animal)

21

Mtfiii «*,i .,

•

The collection of individuals represented by un instance description can be

restricted by describing attributes which they possess. ITie order in which attributes

appear in an instance description is irrelevant.
(a man (with mother Jill))
(a man (with mother (a woman)) (with father (a man)))
(a man (with mother (a woman (with father Bill))))

One fundamental mechanism for knowledge representation is the assertion of

an inheritance relationship between two descriptions. This represents a relationship

between the collections of individuals the descriptions represent. The statement

(Dl 1s D2) represents the idea that anything described by the description Dl is also

described by the description D2. This also means that Dl is a specialization of D2;

tliat D2 is a generalization of Dl. Any knowledge associated with D2 is inherited by

Dl.

(Jack 1s (a man))
(man 1s (a species))
((a man) 1s (a mammal))
(12 1s (a real-number))
((a real-number) 1s (a complex-number))
((a real-number) 1s (a complex-number (with Imaginary-part 0)))

Omega implements an omega order logic for making deductions about

generalizations and specializations. Omega uses several axioms for reasoning about

descriptions and the inheritance relationships between them. For example, there is

an axiom establishing the commutativity of attributes, so that it doesn't matter in

what order they are included in the instance description. There is an axiom

establishing the transitivity of the inheritance relation. There are axioms for dealing

with conjunctions and disjunctions of descriptions, and for relating them to single

descriptions. In addition to the with attributes above, there are different kinds of

attributes, to which more or fewer axioms can be applied.

For example, the relationship (Jack 1s (a mammal)) can be deduced from

the relationships (Jack 1s (a man)) and ((a man) 1s (a mammal)) by the

22

r ———

transitiv it\ axiom. Vcrj significant amounts of knowledge can he embedded in a

lattice formed by descriptions and inheritance relationships between them.

A description lattice is required to be monotonic. All descriptions are

unchanging, all inheritance relationships are assumed to hold forever once asserted,

and knowledge can be added but nc\cr altered or removed. Revision of beliefs,

opposing sets of beliefs, and suppositions can be represented using a viewpoint

mechanism. Omega assertions are commutative — the same deductions can be

made, no matter what order the inheritance relationships are asserted.

Omega supports partial description of abstract ideas, and incremental

specialization of those descriptions with others. Knowledge about the characteristics

of an abstract concept or object and its relationship to other concepts can be

embedded in an incomplete fashion, and new pieces of knowledge can be added

incrementally. Later, we can retrieve and use not only die particular information

asserted, but combinations thereof and deductions made from them using sets of

assertions made in the knowledge base and sets of axioms for relating them to each

other.

1.5 Ether

Ether is a highly concurrent problem solving system based on a metaphor of

problem-solving in a scientific community [Kornfeld 79, Kornfeld, Hewitt

81, Kornfeld 82]. In this model, many independent problem solvers (called sprjes)

can exist in a community. Each sprite specifies a computation to be performed if

some specific goal or hypothesis is presented to the community ft r comment.

Sprites can either work to prove or disprove a goal. Such a computation can post

new goals or hypotheses. One of the fundamental concepts is dissemination of

23

tm Mai Mm I i MM in .i.

1 "'""•"' —

informalion to all sprites which have an interest in it.

Kther has a resource management scheme which associates a sponsor with each

goal. The sponsor provides computing resources for those working to prove or

disprove the goal. Sprite must request some of these resources, which are used as its

computation proceeds.

Ether contains commands for disseminating goals and hypotheses. For

example, assuming we had primitives for description and inheritance like those in

Omega, we might represent the fact that some pattern patternO matched some

object objectO with a predicate: (pattern-matches patternO objectO).

We might disseminate this as a goal:

(disseminate (goal (pattern-matches patternO objectO))).

Some sprite we create then activate may eventually prove this, then

disseminate it as a hypothesis:

(disseminate (hypothesis (pattern-matches patternO objectO))).

Alternatively, some sprite may disprove it, in which case it may disseminate its

negation:

(disseminate (hypothesis (not (pattern-matches patternO objectO)))).

We can create and activate a trivial sprite with an expression such as:
(disseminate

(when (goal (pattern-matches ap *o))
(1f (eq p o)
then (disseminate (hypothesis (pattern-matches p o)))))

Other sprites might try to prove or disprove this goal in other ways. For

example, if the pattern and object are instance descriptions, one sprite might try to

establish a simple correspondence between the concepts and attributes. Another

24

" ,*m.JJ**.>+>m*Uäu*ULÜM**^ ••.... -_. ,. u

might traverse an Omega lattice, trying to find a mure elaborate way of matching the

pattern and object. Other sprites might be responsible for applying Omega axioms

to descriptions and inheritance relations. Note that Ether itself knows nothing

about instance descriptions. Omega lattices, inheritance relationships, or deduction

axioms. These ore assumed to be accessible via some operations independent of

Ether itself.

Often, a sprite trying to establish a goal will disseminate sub-goals, then

disseminate a hypothesis once the sub-goals have been established, lürge numbers

of hypotheses may be disseminated as a result. Because these have been

disseminated, they can be used in establishing other goals, without being re-

established. Because Ether is monotonic, diese hypotheses are never forgotten. An

interesting phenomenon results, called combinational implosion, like the gains

obtained from dynamic programming techniques.

Ether allows programmers to explicitly mention sponsors and viewpoints. For

example, a goal can be sponsored by some specified sponsor or with respect to some

specified viewpoint:
(disseminate

(goal (pattern-matches patternO objectO)
(with sponsor sponsorO)
(with viewpoint vlewpolntO))

(disseminate
(when (goal (pattern-matches »p *o)

(with sponsor •$)
(with viewpoint «v))

...))

Constructs exist for establishment of sophisticated resource management

policies and for establishing relationships among viewpoints. One command for

resource management simply makes a sponsor refuse to provide resources to sprites

requesting them. This is useful for staving off alternative proofs of a goal once the

goal has been established or disproved. For example, if the goal above had really

25

"
»I

been disseminated, and a sprite had just established it. the sprue could choke off

related computation by other sprites with the command:
(withhold sponsorO

(with reason (established (pattern-matches patternO objectO))))

F.ther supports pluralism. Conflicting hypotheses can exist freely in different

viewpoints. Sprites can try to establish the same goal with different approaches.

Some sprites can try to establish a goal while other sprites can try to refute it. Ether

relies on monotonicity. It assumes tbat any hypotheses once disseminated will

remain available and unchanged for all time thereafter. Ether supports

commutativity. Goals and hypotheses disseminated after the activation of a sprite

will be made available to the sprite and processed as appropriate. Likewise, sprites

activated after the dissemination of goals and hypotheses will be available for the

sprite. Ether has much potential for parallelism. The very notion of sprites is as

problem solvers which compute independently, and therefore concurrently. The

monotonicity criterion avoids synchronization problems. The unit of concurrency is

the sprite, and not the commands or expressions which appear within its body. The

implementation of Ether was done in Lisp and is very lisp-oriented. This is not

inherent in Ether, but is an artifact of its implementation.

1.6 ApiaryO

ApiaryO was a design and preliminary implementation of a computer

architecture for supporting actor languages [Hewitt 80]. It supports a model of

hardware as a large number of physically small processors, each with its own

memory, connected by a network of high bandwidth links. Each processor (or

worker) is independent of the rest, but they cooperate by sending messages to each

other over the network.

26

j_.*. . ii n ^ n

I he Apiary architecture is responsible for providing storage management

services. It allocates space for newly-created actors. It also garbage-collects

inaccessible actors. A fast, real-time garbage collection algorithm [l.ieberman and

Hewitt 83] is used for actors existing locally in the worker's memory. A more

complex garbage-collection algorithm involving cooperation among workers is used

in non-local garbage collection. This algorithm also tries to group related actors

onto the same worker, to provide locality of reference, and minimize

communications across workers.

The Apiary architecture is responsible for providing computing power for

actors. Because it must provide computing power for all actors in its memory, it

maintains a queue of tasks. Each task consists of an actor and a communication for

it to accept. It dequeues a task and processes it, enqueueing any new tasks which

this processing causes.

The Apiary performs reliable transmission of communications to target actors.

If the target is on the same worker as the sender, the transmission is fast and trivial,

involving only local memory operations. If the target is not on the same worker as

the sender, then the worker must communicate with at least one of its neighboring

workers, to get the communication on its way to the target. The communication

transmission might involve more of this kind activity, depending on how far away

the target is, and what forwarding information each worker has. Routing of

communications is done dynamically by workers.

The architecture is also responsible for migrating actors and performing load-

balancing. Actors can be moved from worker to worker. This is easy for

unserialized actors, because they can be copied arbitrarily. Moving serialized actors

requires extra synchronization. When a worker's pending task queue is significantly

longer than one of its neighbor's queues, the worker can migrate some of the tasks to

27

_

its neighbors In tins process of load-balancing, actors arc chosen lor migration in a

fashion that attempts to preserve locality of reference as much as possible, to

minimize message-passing across workers.

The Apiary must also be able to deal with physical problems, such as the

failure of communication channels or workers.

1.7 Integration

Actl, Omega, Ether, and ApiaryO were experiments dealing with different

aspects of the design of a high-level actor-based language system. Work progressed

on each, and independent implementations were developed, not all of which were

actor-based. An actor language currently being designed is intended to blend the

functionality and use the mechanisms of Actl, Omega, and Ether. This language,

Prelude is expected to run on a computer architecture such as the Apiary, which

provide parallel computation facilities, as well as services such as storage

management, migration, and transmission of communications.

As an actor language. Prelude will have at least the functionality of Actl. The

specific constructs with which it provides that functionality, however, will be

oriented more toward the intended usage and flavor of the language. In addition,

Prelude will use instance descriptions as information containers and as types. It will

use pattern-matching for information extraction, for type-checking, and for

recognition of communications. It will also use sponsors for resource management.

Pattern-matching with deduction can make use of sprites working together

concurrently to establish or deny a relationship between a pattern and the object

being matched.

Actl, Omega, and Ether were implemented independently. Each was molded

28

nhiYifirii<—inrttiMM «in rMiriiiwinnn • (1

r
to deal with specific and well-chosen issues and ideas, and to a large extent ignored

the issues dealt with by the others. As a result, their designs and implementations

are incompatible. All three are very closely tied to the Lisp language in which they

were implemented.

liiere are also conflicts in their underlying philosophies. Omega and Ether

assume monotonicity, and assume that nothing they deal with will ever change.

Because of this, they can support parallelism, with no need for synchronization.

They can also assume that once something is shown to be true (or false), it will

remain that way forever. On the other hand, Act2 has serializes, which can alter

their behavior.

In addition, syntactic conflicts arise when attempts are made to integrate the

constructs from each with minimal change.

The task of implementing Prelude is factored into the implementation of a few

layers. The Lisp language provides an interface to the raw hardware used in the

implementation of an Apiary. A language called Scripter which is embedded in

Lisp provides an interface to the Apiary architecture, as well as convenient

expression of low-level message-passing computations. Aci2 is an actor language

implemented in Scripter which integrates the basic mechanisms from Actl, Omega,

and Ether, in an extensible fashion. Prelude can be embedded in Act2 with a set of

syntactic and semantic extensions written in Act2, by providing the more

sophisticated services from Omega and Ether.

29

\-

 •• .._.»~.-.

..,

Chapter I wo

Introductory Examples

The following chapters — especially Chapters Four and Five assume a

familiarity with the Act2 language. This chapter serves as a verj brief introduction

to the language, by way of illustrative examples. This chapter is merely intended to

provide impressions of the language, its constructs and their use. It is not intended

to provide a full understanding of the language. Such descriptions have been

encapsulated in appendices, for use as reference material. For those who are

interested in a deeper understanding of the syntax and semantics of Act2, we

recommend browsing through one or more of:
an Act2 tutorial {section B, page 119},
an informal language description {section C, page 124},
or a detailed meta-circular description of Act2 {section D, page 163}.

The choice of appendices should be based on degree of familiarity with Acl2 or with

previous actor language designs, and on the depth of understanding desired.

2.1 A Simple Recursive Factorial Actor

Our first example is a standard recursive implementation of factorial. The

factorial of any integer n larger than 0 is the product of n and the factorial of n - l.

nie factorial of 0 is 1. Factorial is only defined over the domain of whole numbers.

Our recursive implementation of factorial will be a direct realization of the

above description. We will establish a definition of a factorial abstraction, so we can

then obtain the factorial of a number such as 3 with an expression of the form,

(new factorial (with number 3)).

30

j- •
.

r
A factorial abstraction can be defined uiih an expression -.ml) as the one

below, entered as input to an Act2 listen loop.
(define (new factorial

(with number (=n wh1ch-1s (a whole-number))))
(1f (- n 0)

(then do (reply 1))
(else do (reply (• n (new factorial (with number (- n 1))))))))

Hie define expression includes a template describing a particular form of new

expressions. That is, the template

(new factorial (with number (=n wh1ch-1s (a whole-number))))

characterizes all new expressions like (new factorial (with number 3000)),

which have a concept which evaluates to the factorial concept, and which has a

number attribute whose filler is a whole-number.

The define expression also includes an expression which denotes the meaning

of new expressions described by the template. This expression is evaluated in the

environment in which the define expression itself was evaluated, extended with any

bindings occurring in the template. For example, when an expression such as

(new factorial (with number (+ 2000 1000))) is asked to evaluate itself in

some environment, it looks up the concept factorial in the environment.

Next, it asks the pattern

(a factorial (with number (= n wh1ch-1s (a whole-number)))), which was

installed by the define expression above, to match an instance description of the

form (a factorial (with number 3000)). This results in a successful match,

binding n to 3000. The definition environment installed by the define is extended

with this binding, producing a new environment. If die match had failed, a

complaint would have been sent immediately as the response to the new expression's

evaluation request.

Finally, the expression installed by the define,

31

Mm l „.w^.-. -i-i«-_

•~' •

(if (- n 0)
(then do (reply 1))
(else do (reply (• n (new factorial (with number (- n 1)))))))

is asked to evaluate itself in this extended environment Its response to the

evaluation request is sent as the response for the evaluation of the new expression

itself.

When this expression is asked to evaluate itself, it discovers that 3000, which is

bound to n, and 0 do not believe they are equal. In response to the evaluation

request, it replies with the product of 3000 and the result of

(new factorial (with number 2999)).

2.2 A More Concurrent Factorial Actor

In the naive implementation of factorial above, the history of multiplications

in obtaining the factorial of 3000 had the form,

(3000 • (2999 • (... • (3 • (2 • (l * l)))...))). All multiplications had

to be performed sequentially, because of the algorithm chosen as the

implementation for factorial.

A highly concurrent implementation might view the factorial of 3000 as a

product of the integers in the range from 1 through 3000. The algorithm for

computing this range product might divide the problem into the product of the

range product from 1 through 1500 and the range product from 1501 through 3000.

These subproblems are independent, and can be computed concurrently.

Moreover, they can be computed in the same manner, spawning even more

concurrent activity. Thus, a large number of the multiplications involved in

computing the factorial of 3000 could be done concurrently.

Our implementation of factorial can check for the special case of the factorial

32

\mkmm\t i mi 11 •—*i in

of U, and can make use of a subsidiary range-product abstraction for integers larger

than 0. Here is the revised implementation of factorial.
(define (new factorial

(with number (= n wh1ch-1s (a whole-number))))
(1f (« n 0)

(then do (reply 1))
(else do (reply (new range-product

(with low 1)
(with high n))))))

The implementation of the range-product abstraction has special cases, where

the lower bound is larger than and where the lower bound is equal to the higher

bound. Here is its implementation:
(define (new range-product

(with low (=lo wh1ch-1s (a natural-number)))
(with high (=h1 wh1ch-1s (a natural-number))))

(one-of
(1f (- lo hi) do (reply lo))
(1f (> lo hi) do (reply 1))
(if (< lo hi) do

(let ((=m1d match (floor (+ (+ lo hi) 2)))) do
(reply (* (new range-product

(with low 1)
(with high mid))

(new range-product
(with low (+ mid 1))
(with high hi))))))))

Notice that Act2 expressions such as the multiplication expression, *, are

defined to evaluate their arguments concurrently. This is a major source of

concurrency in performing range products using this algorithm. Notice also that the

if branches of the one-of expression are tried concurrently. That is, the boolean

expressions within them are evaluated concurrently, and the first one (temporally)

which is noticed to reply with a true value is chosen. The body of the chosen branch

is then evaluated.

33

«WUMUkMKOli

2.3 A Simple Hank Account Actor

So far, we have seen actors which behave like mathematical functions,

performing factorials and range products. These are typical of the programming

Style espoused by applicative programming aficionados. We can implement other

kinds of actors using the same abstraction mechanism. For example, we can define

a simple account actor, which can represent bank accounts. Our code will be

typical of an object-oriented programming style, made popular by Smalltalk [Ingalls

78]. We can establish a suitable meaning for expressions of the form

(new account (with balance 3000)), so their evaluation results in the creation of

new account actors with the specified balance.

Here is an example of an implementation of such an account abstraction:
(define (new account

(with balance =b))
(create
(1s-request (a balance) do (reply (a balance)))
(1s-request (a deposit (with amount a)) do

(become (new account (with balance (+ b a))))
(reply (a deposit-receipt (with amount a))))

(is-request (a withdrawal (with amount a)) do
(let ((snew-balance match (- b a))) do

(1f (> new-balance 0)
(then do

(become (new account (with balance new-balance)))
(reply (a withdrawal-receipt (with amount a))))

(else do
(complain (an overdraft))))))))

When an expression of the form (new account (with balance 3000)) is

asked to evaluate itself, it behaves in much the same way as

(new factorial (with number 3000)). The difference is that the expression

which gets evaluated is a create expression, which represents the creation of an actor

whose behavior is described by the communication handlers in the create expression.

These communication handlers classify the communications which the actor can

accept for processing, and describe what the actor will do to process each

34

r „__, m

communication. For example, the first communication handler is for requests

containing a message which match (a balance). ITie actor replies to such a request

with a reply containing the current balance as its message.

The second communication handler is for requests containing deposits. When

such a request is received, the account concurrently replaces itself with a new

account with an appropriately increased balanced, and replies with a deposit receipt

for the deposited amount.

The third communication handler is for requests containing withdrawals.

When such a request is received, the account must first check for an attempt to

withdraw more than the current balance. If this happens, then it complains with an

overdraft and does not alter its behavior. If the amount is a valid one, the account

concurrently replaces its behavior with an appropriately decreased balance, and

replies with a receipt for the withdrawal.

Notice that the become and reply commands are evaluated concurrent)) in the

environment in which the actor was created, extended with the bindings of local

variables in the communication handlers and enclosing commands. Note also that

when the account receives a communication, the communication handlers attempt

to match it concurrently.

2.4 A New Control Abstraction

As a final example, we will define abstract syntax for an expression with which

we could extend the language. On the surface, this expression might look like

(first-response expl cxp2). We would like the evaluation of this expression to

respond with the first response it gets when it concurrently asks the two expressions

to evaluate themselves. As soon as it relays the first response, it should stop

35

.

r

sponsoring the second computation and should discard the second response.

Our implementation of the f irst-response-expression abstract syntax actor

will make use of two subsidiary abstractions, an initial-sponsor and a

subsequent-sponsor. ITie strategy is to collect all relevant information present in

the expresslon-eval request, including the message, customer, complaint-

department and sponsor. We create an Initial-sponsor actor using the original

customer, complaint-department and sponsor. We then send both sub-expressions a

request containing the original expresslon-eval message, but designate the

initial-sponsor actor we just created as the customer, complaint-department and

sponsor.
(define (new f1rst-response-express1on

(with express1on-l = expl)
(with expresslon-2 =exp2))

(create-unserialized
(1s-commun1cat1on
(a request

(with message (=or1g1nal-message wh1ch-1s (an expresslon-eval)))
(with customer ^original-customer)
(with complaint-department sor1g1nal-compla1nt-department)
(with sponsor =orig1nal-sponsor))

do
(let ((= 1s match

(new 1n1t1al-sponsor
(with customer original-customer)
(with complaint-department

original-complaint-department)
(with sponsor original-sponsor))))

do
(let ((=new-express1on-eva1 match

(new request
(with message original-message)
(with customer 1s)
(with complaint-department 1s)
(with sponsor 1s))))

do
(send-to expl new-express1on-eval)
(send-to exp2 new expresslon-eval))))))

The Initial-sponsor actor is a scrializer which serves as a sponsor for the

evaluation of the two sub-expressions, as a customer for collecting replies, and as a

36

complaint-department for collecting complaints. As a sponsor, it should rclaj any

requests for more resources to the original sponsor. As a customer and complaint

department, it should relay the first response to the original customer or complaint

department, as appropriate. As it does this, it should also become a

subsequent-sponsor actor, which will refuse to giant more resources and will

discard any other response.
(define (new Initial-sponsor

(with customer =c)
(wHh complaint-department = cd)
(with sponsor =s))

(create
(1s-request (^message wh1ch-1s (a resource-request)) do

(reply (ask s message)))
(1s-reply =message do

(reply-to c message)
(become (new subsequent-sponsor)))

(is-complaint -message do
(compla1n-to cd message)
(become (new subsequent-sponsor)))))

The implementation of the subsequent-sponsor abstraction is quite simple.

It complains when asked for more resources, and does nothing in response to any

replies or complaints it receives.
(define (new subsequent-sponsor)
(create-unser1al1zed
(1s-request (a resource-request) do

(complain (a no-resources-ava1lable)))
(1s-reply something do)
(1s-compla1nt something do)))

37

 —. -

Chapter Three

The History of Act2

One pail of this thesis work has been work on the design of Act2. The design

effort consisted of taking the preliminary design for Prelude itself as documented in

[Theriault 82], analyzing it with respect to our design goals, self-consistency,

uniformity, and implementability, and making modifications as necessary. Some

changes were made less to the syntax of constructs than to their semantics. The

design of Act2 involved evaluating the preliminary, documented design, checking

for consistency, synergy, simplicity; evaluating them in terms of new design goals

and principles; deciding what could be factored out into a base language and what

could be embedded in this language. Integration was envisioned in the preliminary

design, but its details had not been worked through. Some forms of bottoming out

had been addressed by Lieberman's Actl implementation, but bottoming out of

scripts and instance descriptions was peculiar to the requirements for Act2.

As design began, so did the beginnings of an implementation, in order to

further develop intuitions for how much work is done in message-passing using

instance description, for the problem of bottoming out, and for what

implementation aids would be useful. At this time, Scriptcr did not yet exist, and an

Apiary simulator for the Lisp Machine was still in its infancy. An implementation in

Lisp would have been very bulky, time-consuming, and difficult to read and modify.

The circularity problems in bottoming out Act2 are more acute than they were for

Actl, and this would have accounted for significantly more code.

We decided to write a meta-circular description of Act2, using it as a tool in

38

mk i—i m i i «Mi«

the design of Act2 itself. The meta-cireular description, being an abstract

implementation of Aci2, also provided an opportunity to plan and experiment with

implementation strategies.

Once the language design had settled to a reasonable extent. Scripter and the

Apiary simulator were beginning to become usable for small experiments. We

decided to implement expressions for a small toy language, as if they were part of

Act2 itself. An implementation for these expressions was first written in Act2, to

demonstrate its generality, flexibility, and readability. This included the

implementation of an actor-based listen-loop, event-based parsing, and event-based

evaluation.

Next, an implementation for the toy language was attempted in Scripter, to

provide higher-level testing of it and to point out any problems and deficiencies in

the interface it provided to the Apiary. Once the fundamental portions of the toy

language had been implemented, progressive extensions were made to it, to work

out more of the implementation problem, including bottoming-out of primitive

actors and implementing serializes.

This set the stage for an implementation of Act2 in Scripter. The next step

might have been to integrate descriptions and pattern-matching into the toy

language. This was a quantum leap in the complexity and size of the language.

Instead, work was started on the implementation of a rudimentary version of Act2 in

Scripter. This grew into the present implementation of an Act2 interpreter.

39

—— - -—

3.1 A Mela-Circular Description of Act?

3.1.1 Perspective

The meta-circular description is best understood by first understanding the

context in which it exists. A users interface to Act2 is an event-based iisten-Ioop,

with an operating environment in which names are resolved. The listener first

accepts input from the user in the form of list structure, symbols, and numbers. It

asks this input to parse itself, producing an actor which represent the abstract syntax

of the input. This actor may have acquaintances which represent the abstract syntax

of portions of the input. The listener then asks the abstract syntax actor to evaluate

itself as an expression in the current environment.

Each abstract syntax actor is responsible for its own evaluation. Rather than

having a single interpreter, which accepts, parses, and evaluates the input, Act2's

approach is "actor-based" or "object-oriented." The interpretation process is a

cooperative one, with knowledge about each construct localized in the

implementation of the construct.

An interpreter for Act2 consists of a set of actors which parse list structure into

abstract syntax objects, and abstract syntax objects which evaluate themselves and

create actors or transmit communications as appropriate. Our meta-circular

description consists of an Act2 implementation of abstract syntax objects

representing Act2 constructs. That is, we describe the processing which occurs when

the abstract syntax object receives a request to evaluate itself in some environment.

The meta-circular description provides a form of informal, high-level

operational specification of the semantics of each construct. Because of the

circularities which naturally arise in an Act2 description of itself, our meta-circular

40

I

description is mathematically vacuous. It docs, however, convey to its reader a fairly

accurate idea of just what each construct means, in a relatively clear, concise, and

precise manner. This made it useful for discussing the design decisions and

problems with others. It was often less ambiguous than corresponding Knglish

descriptions.

It was also useful because of the way it allowed us to postpone dealing with

low-level implementation detail, such as exactly how communications are

transmitted, how actors are implemented, how Act2 bottoms out into and interfaces

with the underlying architecture. Rather, it distills out the high-level problems and

issues, so they can be dealt with directly, rather than indirectly by debugging a large

and detailed implementation. For the same reason, it increased the likelihood of

experimenting with alternatives, because they were relatively quick and easy to try

out. In the long run, this saved much time and implementation effort.

Because the meta-circular description was written in a programming language,

it made case analysis more natural. The likeness to programming tended to promote

completeness and attention to detail. Often, troublesome cases which might

otherwise have been ignored or taken for granted became apparent. This also

allowed us to use the programming intuitions, which we have acquired through

implementation experience, in the design process.

In addition, writing the description of Act2 in Act2 provided us with intuitions

about what Act2 programming would be like, and what Act2 code would look like.

This experience in itself was responsible for a few changes. Implementing Act2 in

itself also demonstrates its generality as a programming language.

In hindsight, the meta-circular description was a very useful design and

implementation tool. The structure and content of the Scripter implementation of

41

 . ttfeitffltftfU^fc. ^^ jlitaam^jt&antmlt ,

Acl2 was modeled closely aller the ineta-circular description, and progressed

smoothly as a result.

3.2 A Toy Language Implementation Kxperimcnt

When our meta-circular description had become relatively stabilized, we

began to experiment with the implementation of a very simple expressional

language. Part of our purpose was to specify the expressions in the language as

syntactic and semantic extensions to Act2. Since no implementation of Act2 existed,

the implementation of our toy language would actually be implemented as if part of

Act2, requiring only the additional implementation of an event-based listen-loop,

implementation of environments, and installation of appropriate behavior for

numbers, symbols and lists.

Initially, we needed only unseriali/.ed actors, which was fortunate, since our

apiary simulator did not support serializes. Our environments were unserialized,

even though we realized they would eventually need to be serialized. The

expressions we chose to start with were representative of the lambda calculus. A

lambda expression provides the ability to lambda-abstract an expression with

respect to an identifier. Any free identifiers in the expression are statically bound.

When evaluated, a lambda expression replies with a unary operator. When this

operator is "applied" to an operand, the expression it abstracted from is evaluated in

its original context, but with the lambda-variable bound to the operand. Such an

application in our actor-based design consists of sending the operand as a message

in a request to the operator.

Our lambda and apply expressions have the form:

(lambda lambda-variable-symbol abstracted-expression)
(apply operator-expression operand-expression)

42

=—•• - •-

An implementation in Act2 was trivial. The apply expression simplj evaluates

the operator and operand expressions, then sends the evaluated operand (v\ rapped

in a request) to the evaluated operator. The Act2 code is presented below simply for

illustrative purposes, to present an image of the language, its use and expressiveness.

Code in this section is intended mainly to provide imagery, and its details need not

be understood except by readers who are interested enough to browse through

language descriptions in the appendices.
(define (new APPLY-EXPRESSION

(with operator =op)
(with operand sx))

(create-unser1al1zed
(is-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply (ask (ask op eval) (ask x eval))))))

The lambda expression simply results in a closure, which retains the variable,

expression, and environment for later use as an operator.
(define (new LAMBDA-EXPRESSION

(with variable =var)
(with body = exp))

(create-unseHallzed
(is-request (an expresslon-eval (with environment =env))) do

(reply (new closure
(with variable var)
(with body exp)
(with environment env))))))

(define (new CLOSURE
(with variable =var)
(with body =exp)
(with environment =env))

(create-unser 1 all zed
(1s-request =val do

(reply
(ask exp

(an expresslon-eval
(with environment

(new environment
(with primary

(ask (new empty-layer)
(a grow

(with symbol var)
(with value val))))

(with secondary env)))))))))

43

——
•

r •-

The language also had sonic simple expressions, to facilitate experimentation.

Numbers evaluated to themselves. Hie symbols true and false were bound in the

initial environment to primitive actors with appropriate behaviors.

With the addition of an if expression, to choose between two expressions to

evaluate, the language had the ability to make decisions. The if expression had the

form: (If boolean-expression expression-if-true expression-if-false).

Given this as a base, we demonstrated that Act2 indeed had the expressive

power to implement the lambda calculus, and the elegance to implement it in

simple, readable code. We also wrote Act2 code implementing environments, and

representing the behavior of numbers, symbols, and lists.

This established, we set about implementing environments and a listen-loop in

Scripter. We provided a scripter interface for Act2 to customize the behavior of

primitive actors. We implemented event-based parsers for the constructs, and

installed them in an expression-parsing environment. We implemented abstract

syntax for each expression, which knew how to evaluate itself, given an

environment. We ran experiments on the apiary simulator, entering expressions in

our experimental language, noticing what they parsed and evaluated into, and

noticing how many events were required for parsing and evaluation. Printing of

actors was done by Lisp functions.

Some logical and numeric expressions were provided, to express simple

computations. These provided somewhat larger and more interesting test cases.

(not boolean-expression)
(and boolean-expression boolean-expression)
(or boolean-expression boolean-expression)
(eq expression expression)
(+ numerie-exprcssion numeric-expression)
(- numeric-expression numeric-expression)
(• numeric-expression numeric-expression)

44

—— 1—i : -Tinlm—ni iin m i -—•-—'• — J

r — i >

We found ii desirable to further extend our toy language, to remember the

results of previous computations. We invented a construct for extending the loop's

prevailing environment by binding a symbol to the result of evaluating an

expression. In order to make this work right, we introduced a simple

implementation of serializes to the Apiary, to provide serialized environments.

Our new construct had the form: (defname symbol expression).

It allowed us to construct recursive operators, simply by entering an

expression such as:
(defname factorial

(lambda x
(1f (eq x 0)

1
(• x (apply factorial (- x 1))))))

Our implementation of expressions requiring the evaluation of sub-

expressions was a simple one. It would evaluate the sub-expressions sequentially

from left to right, obtaining the result from the leftmost before beginning the

evaluation of those to the right. Some evaluators for the lambda calculus have

included mechanisms for lazy or eager evaluation. For example, in an expression

such as (apply (lambda x 3) ope rand-expression), it is not necessary to evaluate

the operand-expression because it is not used in the body of the lambda expression.

Also, in an expression such as (apply (lambda x (+ x x)) operand-expression),

the lambda calculus' substitution semantics would evaluate operand-expression

twice. Introduction of lazy evaluation mechanisms to lambda calculus interpreters

prevents unnecessary or duplicate evaluations of expressions such as these.

Lazy evaluation is easy to add to our little language implemented in Act2. We

can simply extend Act2 to include a simple delay expression, which replies

immediately with an actor. This actor saves the evaluation environment and the

45

.a

ill» im .1.1 •- "i Hi" i ' ' »'»"I ..IH.I 11.»—- .- • " "" •"*" • •• -

expression's abstract syntax. II no message is ever sent lo the delay, it never

evaluates the expression. If any are sent, the delay evaluates the expression, replaces

itself with the result, then processes the incoming communication. The delay

expression can have the form (delay expression) and can be implemented in Act2

as:
(define (new DELAY-EXPRESSION (with expression sexp))

(create-unser 1 all zed
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply
(create

(1s-commun1cat1on =c do
(let ((=value match (ask exp eval))) do

(send-to value c)
(become value))))))))

We can selectively denote the lazy evaluation of an expression by explicitly

saying (delay expression). For example, a programmer can guarantee lazy

evaluation of operands by writing apply expressions like

(apply (lambda x 3) (delay operand-expression)). In this case, the

operand-expression would never be evaluated, because the operator would simply

reply with the value, 3.

Alternatively, we can have all operands to apply expressions be evaluated

lazily by trivially modifying our implementation of the apply expression:
(define (new APPLY-EXPRESSION

(with operator sop)
(with operand =x))

(create-unserlallzed
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply (ask (ask op eval) (delay (ask x aval)))))))

The ability to implement the delay and hurry expressions required a full

implementation of serializers in the Apiary. Eager evaluation was implemented

using futures. It was expressed in our language as (hurry expression). When

evaluated, a hurry expression immediately returns with u future actor which

46

'
represents the result of the evaluation, in much the saine wa> that a dcla} actor did

above. However, it concurrently asks the expression to evaluate itself, and to

respond to the future. Until it receives the response, the future will enqueue

communications intended for the value. Once it obtains the value, the future will

become the value and will also send all of the enqueued communications to it for

processing. The implementation of futures is a bit more complicated than the

implementation of delays. Note tlrat the response from the evaluation of the

expression must be distinguished by the future from communications sent to the

value. We provide this ability by using the authentication mechanisms provided by

Act2.

Given the existence of the hurry expression, we can explicitly denote eager

evaluation of an expression with (hurry expression).

We can provide eager evaluation by default in our little language by

modifying the apply expression, so the evaluation of the operation proceeds

concurrently with the evaluation of the operand.
(define (new APPLY-EXPRESSION

(with operator =op)
(with operand =x))

(create-unser 1 all zed
(13-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply (ask (hurry (ask op eval)) (hurry (ask x eval)))))))

In the evaluation of an expression such as (apply (apply op argl) arg2),

the expressions, op, argl, and arg2, arc evaluated concurrently.

Some researchers [Backus 78, Dennis 81, Turner 79] believe applicative

languages to be ideal for concurrent programming. Because every expression is

completely functional, and has no side-effects, the order in which expressions are

evaluated is irrelevant. They typically introduce eager evaluation into interpreters

for these languages, in order to realize this potential for concurrency. No matter

47

u

how they implement their interpreters, some amount of synchronization is

necessary. In general, this synchronization requires the notion of state change.

Because of this, the applicative languages are not powerful enough to implement

their own interpreters. Similarly, these languages are not powerful enough to

implement interpreters with lazy evaluation.

3.2.1 Act2 Implementation

The implementation of Act2 in Act2 has the same style as the implementation

of the toy language expressions in Act2. It does, however, handle complaints

wherever they may occur. The listen-loop interface to Act2 has event-based, object-

oriented parsing {section 5.2, page 96} which makes the language extensible.

Abstract syntax objects representing Act2 expressions and commands are

responsible for their own evaluation.

Making syntactic extensions to Act2 is relatively simple. A programmer

simply extends the appropriate expression or command parsing environment,

mapping some symbol which will serve as a kej word to a user-supplied parser. This

parser will parse list structure denoting an instance of the construct into some

abstract syntax actor. Act2 provides a construct for establishing this in a simple way.

For example, here is how we might establish a connection between the concrete and

abstract syntax for apply and lambda expressions:

48

i-nmi« «• m—i m

(dofexprossion apply
;; a parser for "(apply EXPRESSION OPERAND)"
(create
(1s-request (an expression-parse (with source = src)

(with expression-keywords = ek)
(with command-keywords =ck))

do
(case-for src ;; note that a LIST 1s a (simple) SEQUENCE.

(1s ['apply =op sarg] do
(reply

(new application-expression
(with operator

(ask op (a parse-yourself-as-express1on
(with expression-keywords ek)
(with command-keywords ck))))

(with argument
(ask arg (a parse-yourself-as-express1on

(with expression-keywords ek)
(with command-keywords ck)))))))))))

It is quite likely that installations of Act2 will provide generalized parser

abstractions, which will often eliminate the need to write code like that shown

above. Assuming the existence of such an abstraction, prefix-parser, the

installation of the lambda expression might look like:
(defexpression lambda
(new prefix-parser

(with keyword 'lambda)
(with number-of-arguments 2)))

Act2 is also semantically extensible, because a user may define his own

abstract syntax objects, or redefine pre-existing ones. The implementation of Act2

constructs consists of definitions of appropriate parsing and abstract syntax actors,

and the definition of any actors which are useful to create dynamically.

The implementation of Act2 in Scripter is closely patterned after the mcta-

circular description. It uses the same major implementation strategies. It differs in

the details, because Scripter does not have the expressiveness of Act2.

49

I

Chapter lour

Issues in the Design of Act2

4.1 Act2 is Part of a Layered Implementation

Act2 is part of a layered approach to the design and implementation of a more

sophisticated actor language system. Prelude is intended to incorporate and

augment the functionality of the Actl, Omega, and Kther experiments. It will

integrate their fundamental mechanisms and higher-level approaches, ironing out

their differences in philosophy. The result will be a high-level, highly-concurrent

programming language with knowledge representation and problem solving

capabilities. This language system will be accountable for the actors implemented

and created within it, making possible the cooperation of applications written within

it with independently-conceived application systems.

The design and implementation of Prelude is a rather ambitious project.

Attempting to implement it all at once would very likely lead to difficulties, as the

implementation of Plasma did, and might result in a very bulky implementation

which was difficult to understand and evolve.

Act2 was designed to serve as a substrate for the implementation of Prelude.

It can also stand as a programming language in its own right. Act2 addresses

practical issues involved in an interface with the computer architecture below. It

addresses issues involved in an interface for programming applications and

embedding languages above. In addition, it addresses issues involved in integrating

the fundamental mechanisms of Actl, Omega, and Kther into a coherent language

base. In this way, a substantial set of issues can be addressed by a manageable

50

•

HIM HI-I

project, without inclining the bunion of a full-scale implementation of Prelude.

Prelude's additional functionality can be embedded in Act2, using Act2

implementation mechanisms, without the need to address those issues already

addressed by Act2. Additional features include the ability to construct and

manipulate lattices of descriptions, related by inheritance; the ability to make

deductions based on these relationships; more sophisticated resource management

policies; and dissemination of information.

4.1.1 Act2 Assumptions

Act2 itself is built on top of other layers, in which other sets of problems are

factored out and solved. Lisp-Machine Lisp [Weinreb and Moon 81] provides a

comfortable interface to the underlying hardware, and provides abstractions suitable

for representing actors. The worker interface to the Apiary architecture is

implemented in Lisp, and provides a view of the underlying hardware as part of an

actor-based apiary. Scripter is a macro language embedded in Lisp, which provides

a high-level interface to workers, allowing computations to be expressed in terms of

actor creation, one and two-way communication, and change of behavior, in

addition to Lisp code. Act2 is implemented in Scripter.

An important part of the design and implementation of Act2 is an assumption

about the character of computation on the underlying computer architecture. For

example, Act2 assumes that the transmission of communications is reliable, cheap,

and quick. The worker optimizes the transmission of a communication when the

target is on the same worker as the sender. Workers attempt to maintain locality of

reference when migrating actors to other workers.

Act2 assumes that creation of actors is very cheap. All that is involved in actor

51

 •

crcnlion is the allocation in Lisp t>f a small data structure 10 represent ihe actor.

Aci2 assumes that actors arc garbage-collected, and that the garbage collection

algorithms are efficient and effective. Each worker does local real-time garbage

collection of inaccessible actors. An algorithm has been developed for this, which

reclaims storage quickly [l.ieberman and Hewitt 83]. Garbage collection across

workers is a more difficult problem, requiring a more sophisticated algorithm by

which workers cooperate to localize inaccessible actors for intra-worker reclamation.

Act2 assumes memory is inexpensive and plentiful. This is becoming more

and more true with time. Act2 also assumes that copying and maintaining multiple

copies of unserialized actors on different processors is cheap. Actors which cannot

change can be copied indiscriminately, to increase locality of reference, and to make

migration easier.

Act2 assumes that the underlying computer architecture may consist of large

numbers of processors interconnected by high-bandwidth links. The apiary was

designed with this in mind. Workers perform load-balancing and migration, in

order to make use of the available parallelism.

A consequence of these assumptions is that a high degree of concurrency may

be obtained by expressing computations in terms of large collections of highly

specialized actors communicating with each other by transmission of

communications. That is exactly the style of computation supported by Act2.

4.1.2 Act! Design Goals

52

attMüM

4.1.2.1 induration as a Design Goal

Act2 is designed to integrate the fundamental mechanisms developed in

experiments with Actl. Omega, and Ether. As such, it is an actor-based language,

founded on message-passing semantics. It provides mechanisms for creating actors,

for point-to-point communication, and for expressing two-way communication.

Act2 makes use of descriptions in fundamental and pervasive ways, which

allow for them to coexist with other actors. It implements its own mechanisms for

pattern-matching, which do not involve deduction. Inheritance and deduction

mechanisms can be introduced as extensions to the language.

Act2 uses sponsors as its fundamental resource-management mechanism for

controlling asynchronous computations. It is possible to implement sprites as actors,

and to introduce more sophisticated resource management policies. Sprites can

work off patterns which are descriptions, and dissemination of information can be

performed in coordination with description lattices and point-to-point

communication.

4.1.2.2 Expressive Power as a Design Goal

Expressive power is an objective measure of the generality of a language.

Because it will be used to implement Prelude and arbitrary applications for

concurrent systems, Act2 must be general enough to express whatever might be

necessary. Generality includes the ability to deal with concurrent systems, including

those which do not assume a closed world model.

One criterion for generality is the ability to implement Act2 in itself. The

meta-circular description {section D, page 163} is evidence of this. Another is the

direct support for the actor model, whose generality has been considered

53

independently.

Act2 is expected to be used to implement languages as well as applications.

For this reason, it needs abstraction mechanisms and mechanisms for syntactic

extension.

In addition, Act2 is expected to deal with issues such as protection, security,

and authentication, to protect the integrity of actor systems and allow controlled

sharing of information.

4.1.2.3 Expressiveness as a Design Goal

Expressiveness is a highly subjective measure of the quality of a language. It

involves such areas as simplicity, friendliness, benevolent character, and range of

application of a language. For example, Act2 was designed to be interactive. Act2

was not designed to be a minimal language, providing only enough mechanism for

the integration and generality goals. Instead, its constructs are geared more toward

understandability and programmability. It includes software engineering features in

addition to those of Actl. Act2 was not designed to provide everything a

programmer might want, but to make it possible and convenient to embed further

and more useful mechanisms.

4.2 Programmer Interaction

One of the important aspects of a language is the interface it presents to a

programmer. We take a broad notion of "programmer" to include both traditional

human programmers and computer programs which write or manipulate other

programs. There are many trade-offs in user-interface design, and more are

introduced by this broad concept of a user.

54

MtfHMBM

Our general approach in the design of Act2 has been to attempt to maximize

flexibility and generality. Specifically, in the area of programmer interface, we have

opted for a language which is highly interactive in character, for comfort in

programming. We have also attempted to decouple issues of syntax and semantics,

so they could be handled separately.

4.2.1 Interactiveness

One of the basic requirements for Act2 was that it be designed to be

interactive in nature. [Sandewall 80] demonstrates the utility of interactive

programming environments. Experience has show n that more interactive

programming environments tend to be more comfortable to work with and provide

a friendlier human interface to the machine and language system [Algol, Lisp,

Smalltalk, Halbert-thesis]. Act2 was designed as an interpretive language;

compilation is treated as an optimization which is engineered to fit within this

framework. The interface to Act2 is a listen-loop, similar in nature to that of Lisp,

which accepts as input any expression in the language. This encourages a more

conversational interaction between man and machine.

There is always an environment associated w ith the listener for resolving

symbols used in the user's input. This environment corresponds both to the context

of a conversation and to a personal data-base. The environment is preserved from

session to session, to provide a sense of continuity.

Special expressions exist for the binding of names and definition of

abstractions at the top level. They alter the semantic content of the prevailing

environment, in order to preserve the definitions for later use. A user can associate

names with specific actors using the defname expression, and can can define

abstractions using the define expression. Most other expressions in the language do

55

- *ti Mm '••!•—m^

•" '" '

not affect the environment in which they are evaluated.

4.2.1.1 Actor-Based Interpretation

Aet2 is implemented in the same style we advocate for all applications. There

is no centralized interpreter for the language. Instead, each construct is

implemented by an abstract syntax actor, which is responsible for its own evaluation.

This makes semantic extensions possible in a very natural manner — we can simply

define new abstract syntax actors using the same mechanism for implementing any

other abstraction. The implementor only needs to piake the abstraction obey the

communication protocols of abstract syntax actors, accepting communications such

as requests for evaluation or compilation.

Parsing is also actor-based. Each construct parses itself, using a parser which

has been associated VN ith the construct. The listener reads in user input as a set of

nested syntactic phrases, represented as a composition of list structure, symbols, and

numbers. Each syntactic phrase is asked to parse itself. List structure scans itself,

looking for a symbol which has been defined as a keyword for some construct. It

then delegates the job of parsing to the parser which has been associated with that

keyword.

This method of parsing makes syntactic extension of Act2 an easy matter. A

programmer can install a new keyword/parser pair using the defexpression and

defcommand expressions. Such declarations are done at top level, to the listener.

Once again, the actor-based programming discipline gives us the flexibility we

desire.

56

-—

f
4.2.2 Act2 Separates Syntax from Semantics

The actor-based implementation of Act2 decouples the activities of parsing

and evaluation of language constructs. In so doing, it provides natural means for

syntactic and semantic extension of the language. In addition, it decouples the

syntax of the language from its semantics. A set of abstract syntax actor definitions

embody the semantics of the Act2 language.

These abstract syntax actors are largely independent from the concrete syntax

which is mapped onto them by a set of parsers. This separation of syntax and

semantics allows a large degree of separation of style from mechanism, of

presentation from representation, of form from function, and of syntactic issues

from semantic issues. It allows us as language designers to concentrate on different

sets of issues separately.

We took advantage of this by concentrating on semantic issues and

requirements. We chose a concrete syntax which closely resembles the abstract

syntax we found desirable. Alternative sets of constructs can be mapped onto this

set of abstract syntax actors if and when desired.

4.2.2.1 Presentation and Editing Tools

We gain additional benefits from this decoupling of syntax from semantics.

Presentation tools can operate with abstract syntax objects, and provide alternative

ways of looking at them, based on such things as programming style, familiarity of

the reader with the code, indentation preferences, and available space. This can

provide a more comfortable way to read code written by others.

F.diting tools can make it more comfortable to write Act2 code. An editor can

provide templates for the programmer to fill, decreasing the amount of typing

57

•••

needed. Il can also allow programmers the luxury of persona] slioit-liand, which it

converts to the appropriate abstract syntax.

4.2.3 Syntactic Issues

4.2.3.1 Bracketed Syntax

Act2 has a bracketed syntax. This was chosen because we needed a

convenient, uniform way of recognizing phrases and sub-phrases in the language. It

provides us with this ability even in the face of arbitrary syntactic extensions It

makes the language amenable to convenient construction and analysis by computer

programs as well as human programmers. It allows lexical analysis to be performed

automat;cally, and to be ignored by those making extensions. This in itself removes

a large part of the complexity of parsing. It reflects the structure of computer

languages in their syntactic representations. This makes the problems of parsing

and extension tractable.

User input is read in as nested list structure, grounded by "atomic" tokens

such as symbols and numbers. Each list, is asked to parse itself. In doing so, it scans

itself for a symbol for which has been established a keyword/parser pair. This is the

mechanism by which syntactic extension is made possible and practical in Act2.

Bracketed syntax is the most natural way we know of to provide these capabilities.

4.2.3.2 Template English

In choosing a concrete syntax for Act2, one of the guidelines we used was to

try to make it resemble English as much as possible. Whenever possible, we

attempted to make the meaning of constructs closely resemble the intuitive meaning

of the phrases denoting them, giving Act2 an air of familiarity and understandability

58

even to novice readers. An Act2 construct often reads somewhat like text, with the

addition of parentheses to mark off essential clauses. This is especial!) noticeable in

instance descriptions and new expressions. It is also evident in more complex

expressions, such as case-for, if, one-of, and let. Some compromises were made for

the sake of conciseness. There is a point where verbosity ceases to enhance

readability because a sense of structure is lost. We believe Act2 strikes a good

balance, being verbose enough to be relatively understandable to novice readers,

using parenthetical template English to make the structure of the code visible, and

avoiding overly verbose concrete syntax for constructs.

Programs are also made more readable by the existence of more familiar

expressions of common primitive operations. For example, (+ 3 5) can be used

instead of (ask 3 (a + (with operand 6))) In addition, programmers can use the

infix notation (3+6) if they feel more comfortable with it. This is slightly more

readable for novices and has more of an English-like "flow" to it. Unfortunately,

with the opportunity for arbitrary syntactic extension, there is a danger of confusing

leading identifiers with keywords. For example, the identifier a in (a + b) might

cause confusion when parsing the expression, because it resembles an instance

description. For this reason, Act2 warns programmers when they attempt to bind an

identifier which also happens to be an expression keyword.

4.2.3.3 Verbosity

One important trade-off in Act2 syntax is verbosity. On the one hand, a

language which is overly verbose may be cumbersome to write programs in, and

may even be less readable if the main ideas and algorithms are lost in words and

symbols. On the other hand, a language like API. which is overly terse can be very

cumbersome to read, even for those who have made the effort it takes to become

fluent in it. The bias in Act2 is toward readability, at the expense of increased

59

.

I

J

" '

verbosity. Our assumptions arc that more code is read than is actually written or

modified, and that the readers will often not be the original writers. It attempts to

combine the local-understandability benefits of natural language phrases with the

more global-understandability benefits of structured code. Of course, Act2 is

somewhat flexible about the whole matter, allowing programmers to introduce more

concise or verbose forms of constructs, using the syntax extension mechanisms.

Modern editors have abbreviation facilities and other writing aids. Some deal

directly with the syntax of a language. With the similar tools, an Act2 programmer

should have few reservations about writing "verbose" code.

If we look at Act2 code more closely, we find it difficult to justify a more

concise syntax for its constructs. We could shorten the keywords, but the language

would become more cryptic. Instance descriptions are about as concise as they can

be, without an adverse effect on readability. As they are now, they readjust like

English text and has exactly the connotations we intend, enhancing the imagery of

even experienced readers. New expressions could be forsaken in favor of a

positional notation, but we would lose the value of keywords, which are a great aid

to readability and understandability. One major source of bugs in ihe history of

Lisp programming has been interface problems and misunderstandings, because

Reading code is difficult without flipping back and forth between function calls and

definitions, to see what each parameter means. In addition, the strong resemblance

between new expressions and instance descriptions is strongly suggestive of the

relationship between actors and their descriptions, and of Acl2's flexible notion of

instantiation of abstractions.

Act2 constructs have been designed so their most common usages are also

their most concise. For example, the otherwise clauses in create, one-of, and

case-for constructs are rarely needed, and can simply be omitted, Ilie usual intent

of programmers is to simply complain if none of the possibilities they allowed for

60

"•'—* : * •••••! '• ' - ..-••• .

actually occur. In addition, all constructs relay any iinhandled complaints which

might occur in the evaluation of sub-expressions within them, eliminating a need to

explicitly wrap a handler around the sub-expressions.

liiere are many cases in Act2 where the programmer is allowed not to

explicit!] denote information which can be derived from context. Commands like

reply and complain allow the programmer not to mention the intended target, when

handling a request communication. The become command refers to the enclosing

serializes which need not be explicitly mentioned. When the replacement actor is

simply another instance of the same abstraction, the new expression within the

become command need only mention those attributes which will be different. In

general, Act2's constructs behave in such a manner that customers, complaint

departments, and sponsors need not be explicitly mentioned by programmers.

4.2.3.4 Keyword-Based versus Positional Instantiation

It is possible for Act2 code to be presented in a more condensed form, when

desired, new expressions can be presented with a lisp-like function call notation

which eliminates keywords. Programmers can easily make an extension for a

smalltalk-like keyword notation.

There are serious issues to consider when choosing a style. From a software

engineering standpoint, it is very useful for a keyword to describe the significance of

each parameter of an instantiation. The attribute relations in new expressions are

very useful for this purpose. They serve as good documentation for readers, and

allow extra consistency checking between the instantiation and the definition. They

also eliminate the problems which occur when parameters are permuted. The main

advantage of positional notation is its conciseness. In writing a program, it is very

convenient to reduce typing, and in reading a program, it sometimes makes the

61

-•••• •- • "'"•'«• • I -'• • -•*"l'l",~ I "IP

overall algorithm more apparent by reducing the amount of text required to

represent it. ITie benefits of positional notation are often easily obtained with

appropriate editing and presentation tools. Act2 provides programmers with the

ability to choose which style they wish for each individual instantiation.

4.2.3.5 Extensibility

Part of the success of Lisp has been its extensibility. This feature allowed

other languages to be embedded within it. It also allowed the language itself to

grow to include increasingly sophisticated and useful features.

We also wanted Act-2 to be syntactically extensible, for these and additional

reasons. We feel it may be desirable to develop more than one concrete syntax for

Act-2, to serve the needs, desires, and customs of programmers with different styles.

Syntactic extension allows programmers to choose a level of verbosity which best

serves their needs, and to introduce whatever syntactic sugaring they wish into the

language. Customization is an important property of a language which is to be used

by disparate institutions.

Assuming syntactic extensibility allowed the Act2 language design to go on at

the abstract syntax level, without much concern for the syntactic details. It also

allowed us, in the language design phase, to choose a concrete syntax which is very

near the abstract syntax, permitting us to concentrate independently on underlying

mechanisms and programmability.

Providing the ability for embedding Prelude in Act2 saves us from a full

implementation of Pi elude; instead, we onl> need to program the extensions. It is

difficult to anticipate now the syntactic and semantic requirements of Prelude, so

syntactic extension is even more important.

62

4.2.4 1 lie Expressive Character of Act2

There were some guidelines we used while choosing an abstract syntax for

Act2. Many of the decisions which needed to be made were very subjective in

nature, dealing more with expressiveness than with expressive power. We did not

intend for Act2 to be a kernel language for implementing Prelude. Instead, we

wanted it to be a full-fledged programming language in its own right, with emphasis

on mechanisms for good software engineering. This is necessary because the

implementation of Prelude is a rather complex task in itself, and should be done

with a suitably high-level and comfortable language. These criteria were deemed

more important than the size of Act2 and the complexity of its implementation. As

a consequence, Act2 has high-level, very flexible constructs, such as create, case-for,

one-of, and let.

4.2.4,1 Familiarity

One of the guidelines we followed was to make Act2 syntax be as similar as

possible to familiar syntax. The syntax for instance descriptions and patterns were

borrowed, unchanged, from Omega. Our notation for instantiation of abstractions is

almost identical to the notation for instance descriptions, to make them readable,

and to suggest a close relationship between the two ideas. Whenever possible, we

attempted to use the syntax described in (Thcriault 82]. Above all, we did not want

to make the language much more complex to read or work with. We made an effort

to express familiar ideas and constructs in familiar ways and with commonly-

understood notations. For example, we permit the use of infix notation in

expressions.

63

4.2.4.2 Economy of Concept

There are relatively few fundamental concepts in Act2. All computation is

ultimately expressed in terms of actor creation and replacement, communication

transmission, and simple decision. Properties of actors and the actor model are

exploited in the language, to avoid introducing new concepts and constructs. There

is also the familiar and intuitively appealing notion of description. They are used as

information containers as well as "types" in the language. Pattern matching is used

for recognizing and extracting information, binding names, accepting

communications, handling complaints, dispatching on values, testing for equality,

instantiating abstractions, comparing descriptions, and type-checking.

4.2.4.3 Uniformity

In Act2, similar things are done in similar ways. We have already seen the

similarity of new and a expressions. Creating a new bank account with

(new bank-account (with balance 500)) is very similar to creating a description

of the bank account with (a bank-account (with balance 600))

The create, caseTor, and one-of expressions are quite similar in the way they

choose one of many possibilities. They all have the form:

(introductory-part
possibility I-1
possibility-1-2

possibility- 1-nl
(otherwise possibility-2-1

possibility-2-2

possibility- 2-n2
(otherwise ...)))

The first set of possibilities, possibility I-i, are tried concurrently. The first

(temporally) to succeed is chosen, and its body of commands is evaluated. If none is

successful, the second set of possibilities is tried. Any number of sets of possibilities

64

•

I
can be denoted in nested otherwise clauses. If none succeed, the evaluation

complains.

Another aspect of uniformity is that case-for, let, one-of, and if expressions

have exactly the same syntax and very similar semantics as case-for, let, one-of, and

if commands. In addition, these expressions, and the create expression, have bodies

of commands very much like those of composite commands. This allows concurrent

activities to be performed as the bodies are evaluated. All bodies have the form:

do command-1 command-2 ... command-n

The idea of denoting the natural or exceptional "value" of a composite

expression is thought of as sending a reply or complaint communication in response

to a request for evaluation of the expression. Therefore, the same syntax is used for

this as is used for replying or complaining in response to a request communication,

in the bodies of create expressions. The reply and complain commands serve both

purposes.

4.2.4.4 Programmer Productivity Supported by High-Level Constructs

Studies have suggested that the average amount of debugged code, measured

in lines, a programmer can write per day is relatively constant across languages. The

most interesting of these tests supported this result when comparing assembly

coding and PL/1 coding. It found that people would write and debug at roughly the

same rate in lines of code per day. Because a line of PL/1 code typically does much

more than a line of assembly code, the PL/1 programmers tend to produce more.

This might be attributable to the increase in readability, understandability, and

programmabilily, as well as higher-level abstraction mechanisms.

Part of the goal in the design of actor languages is to do as much as possible

65

 - '••

for a programmer. Writing highly concurrent programs in some languages, such a^

Mesa, assembly code, and even Ada, is somewhat cumbersome and requires special

attention; concurrency is inherent in Act2 and needs little if any consideration by

programmers. Act2*s high-level constructs allow convenient expression of complex

concurrent behavior.

Another of Act2's features is pattern-matching, which condenses and localizes

much functionality in areas such as recognition, filtering, and dispatch. Act2 makes

it. potentially more of a savings, once assertion and deduction mechanisms are

embedded and made use of.

4.2.4.5 Abstraction and Extension

Act2 has mechanisms for defining and instantiating abstractions, the define

and new expressions. These mechanisms unify the notions of procedural, control,

and data abstraction by emphasising communication, rather than representation.

Abstraction allows a programmer to define his own absti actions in addition to those

which are provided with the language. Because of the uniformity in which pre-

defined and user-defined abstractions are treated, this can be thought of as raising

the level of die language itself. It makes the language more suitable for

implementing applications which are more easily expressed in terms of those

constructs.

Act2 goes beyond this aspect of expressiveness, allowing programmers to

introduce new expressions and commands into the language itself. Not only is it

possible to define abstractions suitable for special application domains, but it is

possible to tailor the language itself into one allowing convenient expression of

fundamental concepts in the application domains.

66

—— •Ml

Programmers can exploit the extensibility mechanisms to provide a more

comfortable language with syntactic sugaring allowing common behavior to be

expressed concisely. We can extend the language with more specific constructs,

which are implemented in terms of the more general ones. For example, the if

construct is simply a specialization of onc-of. It was, however, included because of

the frequency with which binary decisions occur, and because it makes them more

readable, and is more familiar to programmers.

4.3 Act2 has Actor Semantics

4.3.1 Act2 is Actor-Based

The Act2 language is based on a well-defined, mathematically understood

computational model. The integrity and consistency of the actor model have been

established in [Clinger 81b]. This forma! model serves as a solid foundation for

Act2, which inherits the benefits of well-definedness, and exploits the properties of

the model.

Many of the fundamental issues in language design of a language system, such

as abstraction mechanisms and concurrent computation, are dealt with abstractly by

the Actor model of computation [Hewitt and Baker 78). Because Act2 allows the

characteristics of the model show through at the language level, issues handled by

the model are inherited by the language. The language design can concentrate more

on other issues. This is another of the features of a layered language design

approach.

67

-— -- - ••• Uli .

——

4.3.1.1 Representation Abstraction

An actor cannot directly view or manipulate the contents or implementation of

another actor. All it can do is communicate with the actor, asking it for information

or requesting it to change. Only the actor itself can alter its behavior. This property

is known by several names, including representation abstraction, protection,

encapsulation, opacity, and information-hiding. The hiding of implementation

details has proven itself as one of the fundamental paradigms of software

engineering.

Limiting access to an actor's implementation has many benefits in the area of

software engineering. Techniques for data-type induction have been developed for

the object-oriented computational model [Liskov 72, Guttag, Horowitz and Musser

76]. Similar techniques can be used within the actor model [Hewitt and Attardi

81, Hewitt, Attardi, Lieberman 79]. The correctness of an actor's implementation is

a local phenomenon, depending only upon its specification, its script, and the

specification of the actors it communicates with.

The discipline of communication enforced by actors allows the

implementation of an actor to change, without affecting the actors which

communicate with that actor, as long as the actor's communication protocols do not

appear different to them. It also allows different implementations of an actor to

coexist.

4.3.1.2 Absolute Containment

In addition to being opaque, an actor is entirely self-contained. It can only

communicate with its acquaintances and with the acquaintances of the

communication it is currently processing. There is no notion of global state to put

restrictions on the existence and location of the actor. Actors can be migrated from

68

Ük^UMH

worker to worker when convenient, because of their machine independence. This

transportability is possible precisely because there is no dependence of the actor on

any storage locations local to a worker.

4.3.2 Modularity

Actors' properties of representation abstraction and absolute containment

suggest the modularity inherent in the actor model. The model goes beyond this,

unifying data, control, and procedural abstractions. The fact that an actor contains

both data and procedural information (its acquaintances and script), is naturally

sufficient for representing both procedures and data structures. The model's

emphasis on communication blurs the distinction between them.

The emphasis on communication also allows the representation of control

abstractions as actors [Hewitt 77]. One typical use for control structures in

programming languages is to obtain a stream of values [Liskov, et al 81]. These can

be represented as dynamic sequences in Act2, a literal manifestation of the

"sequences" like those in [Waters 83]. Suppose we have an abstraction

implementing tree traversal. We can simply create an actor representing the

traversal of some specified tree. This actor might behave just like a sequence,

accepting requests for its first and rest. In fact, it retains information about the

tree and its placement within it, and computes the requested information

dynamically.

Sponsors allow the implementation of a new class of control abstraction. They

regulate the availability and rate of consumption of computing resources by

asynchronous computations. Explicitly expressing this in the computations

themselves would drastically increase the complexity of their implementations.

69

*

•••'•• ••• I

Act2 unifies the ideas of data, control, and procedural abstraction in a single

abstraction mechanism. This abstraction mechanism encapsulates not only the

creation of actors, but arbitrary expressions in the Act2 language. This allows for a

more convenient expression of procedural abstractions than that mentioned above.

The define and new expressions cooperate to provide this very flexible form of

lambda abstraction.

Abstractions in Act2 are actors, and can be sent communications just like any

other actor. This corresponds to the idea of abstractions being first-class objects in

other languages. This is clear in the case that the abstraction definition simply

represents the creation of an actor. It is also true in the case of some other arbitrary

expression. For example, consider the definition of a factorial procedural

abstraction as a recursive expression. The implementation is installed in a

factorial atomic description, which can then be sent communications relevant to

the implementation.

4.3.3 Message Passing Semantics Permeate Act2

In an actor-based language such as Act2, everything is an actor. All

computation is performed using transmission of communications. These provide

tremendous flexibility in expressing and performing computations, as will be

discussed below.

4.3.3.1 Primitive Actors use Message Passing Semantics

In Act2, the message-passing paradigm of the actor model is used down to the

level of primitive, pre-defined actors such as numbers and symbols. For example,

simple arithmetic operations can be performed by the numbers themselves, in

response to requests to do so. Because a uniform protocol is used throughout, a user

70

lMltfltiililftaii4iAiawaliMMäaiMtt*flfeafcMHtaMHifti

can define his own Turn1, of numbers, such as complex numbers, which behave like

numbers. Code written for handling numbers in general will work even when some

of the numbers handled are user-defined ones. The use of message-passing

semantics in this manner makes the arithmetic operations work across machines, and

with arbitrary actors using the numeric communication protocols. This is essential

for concurrent applications in general. Arithmetic operations involving primitive

numbers on a single worker is viewed as a special case which can be optimised,

rather than as the only case, such as in many other languages.

4.3.3.2 Actors Implemented in Act2 have Actor Scripts

The script for an actor implemented in Act2 is itself an actor. The declaration

of an abstraction involves the installation of an abstract syntax tree representing the

abstracted expression. Instantiation of uncompiled abstractions causes this abstract

syntax tree to evaluate itself. Actors created in this manner have scripts which are

composed of a tree of abstract syntax actors, representing the behavior of the actor

in terms of Act2 language constructs. Acceptance of a communication involves

message-passing among the abstract syntax actors composing its script.

4.3.3.3 Programs as Data

Act2 programs are "first-class objects" in the Act2 language. User input is

read in as symbols, numbers, and list structure. All of these are actors, which can be

communicated with. Parsing produces abstract syntax trees, composed entirely of

actors. Environments are first-class objects in the language, and can be accessed,

created, or manipulated by programs. Evaluation can be done simply by sending an

evaluation request to an abstract syntax tree. It is evident, then, that Act2 programs

can be written which manipulate or create other Act2 programs. Such power

accounts partially for the popularity of lisp.

71

The quote expression is very useful for construction of Act2 code by oilier

programs. It allows the denotation of unparsed list structure and symbols, of which

Act2 syntax is composed. The parsc-cxprcssion expression is convenient for

denoting abstract syntax trees. It parses, but does not evaluate the list structure or

symbols in its argument.

4.3.4 Transactions

All communication in Act2 occurs by one-way, asynchronous, buffered

transmission of communications. It does not rely on a procedure-call mechanism, as

do languages like Argus and Ada. Procedure call semantics can be implemented

efficiently using message-passing. They are simply a special case of the more

general notion of transactions in Act2.

Act2 supports three major kinds of communications. Request

communications correspond roughly to the procedure-call part of the proccdure-

call-and-return mechanism. They include extra information, customers and

complaint-departments, indicating where a response should be sent. Reply

communications correspond roughly to the return part of the procedure-call-and-

return mechanism.

A very common pattern of communication is the sending of a request,

including a customer, to some target actor, followed eventually by the sending of a

reply to the customer. The sending of the request and the sending of the reply are

fully decoupled, however. The receiver of the request can redirect the request to

another actor. It can do some processing and let another finish. It can hang on to or

pass along the customer from the request, which is a "first class object" in the

language. It, or some other actor, can eventually reply to the customer. Between the

sending of the request and the sending of the reply, arbitrarily convoluted patterns

72

•-•- ——-• miin imi •! i IMIIII -•-

r

of communication transmission can occur. Actors are not arbitrarily restricted by

strict control structures like procedure call and return.

4.3.4.1 Customer Chains versus Execution Stacks

There is no need for execution stacks in Act2. This functionality is subsumed

by "chains" of customers — customers with customer acquaintances. When they

receive a reply, they might eventually reply to their customer acquaintances. These

chains are more flexible than execution stacks. Many such chains can exist. They

can branch off into multiple customer chains. They can span workers. Portions of

them can be migrated from worker to worker, independently from the rest. Being

actors, they can be kept as acquaintances and communicated with.

The very common pattern of sending a request and accepting a reply are

expressed very conveniently in Act2. The programmer does not need to explicitly

construct customers for each request. Act2 expressions transform their procedure-

call notation, and the contexts in which they occur, into the sending of requests with

appropriate customers. This is done without programmer effort. Common patterns

of communication among actors on the same worker can be optimized, increasing

the efficiency of the transactions.

4.3.4.2 Complaint Handling

When an actor accepts a request, it is usually expected to respond. If

processing of the communication completes without problems, a reply

communication can be sent in response. If minor problems occur, it is often

possible to reply with some meaningful message. If, however, irreconcilable

problems do occur, some means is needed to indicate that fact, as well as to respond

with some communication with a message which might indicate the reason for the

73

failure and provide any information which might be helpful to recover from the

problem.

Act2 provides a special type of communication called a complaint

communication to represent an exceptional response. This corresponds roughly to

Clu signals, PL/1 conditions, or error codes. In keeping with the Actor model of

computation, Act2 performs exception handling using the message-passing

paradigm.

Act2 provides mechanisms for handling complaints. The primary one, the

case-for construct, is for handling complaints generated by the evaluation of an

expression, which we'll call the guarded expression. It recognizes complaints using

pattern-matching. It performs an additional service by recognizing replies using

pattern-matching. That is, the case-for construct makes use of the pattern-matching

paradigm to recognize and extract information from responses to requests, whether

they are replies or complaints. Along with this recognition is the selection of a body

of commands to be evaluated once the response is obtained.

The case-for construct serves both as a dispatching mechanism for (replies to

the evaluation of) the guarded expression and as a complaint-handling mechanism

(if complaints are generated by the evaluation). In this sense, case-for unifies the

notions of dispatching, complaint-handling, information extraction, and decision-

making. For example, suppose we had a variation of the account abstraction

defined in {section 2.3, page 34}, which included the new balance in deposit and

withdrawal receipts. When making a withdrawal, we could use the case-for

construct to handle a complaint or to take different actions based on the new

balance:

74

(case-for (ask my-account (a withdrawal (with amount x)))
(complaint (an overdraft) do ...)
(is (a withdrawal-receipt

(with new-balance (=b such-that (< b 600)))) do ...)
(otherwise

(1s (a withdrawal-receipt (with balance =b)) do ...)))

Act2 provides a mechanism for handling complaints from a command. This is

very similar to a case-for command with has complaint handlers, exclusively.

Rather than guarding an expression, this command guards another command.

Complaints are automatically relayed by constructs which do not explicitly

handle them. In addition, this does not even cause a degradation in performance,

because requests have both a customer and a complaint department. Replies are

sent directly to the customer. Complaints are sent directly to the complaint

department, with no need for winding down through a customer chain. This idea

was suggested in [Lieberman 82].

Act2 may, itself generate complaints when this is appropriate and there is no

convenient alternative. For example, if no handler is capable of accepting a

communication, Act2 will complain to the communication's complaint department

(if it is a request) or to the implementor.

4.3,5 Inherent Concurrency

The actor model, with its one-way, asynchronous, buffered model of

communication, is inherently concurrent. The Act2 language preserves this inherent

concurrency in its high-level constructs.

Whenever no ordering is necessary between the evaluations of separate

commands and expressions, the Act2 definition does not impose one. This allows

them to be evaluated concurrently, and their evaluations can proceed in parallel if

75

sufficient parallelism is available. The design of Act2 attempts to minimize

dependencies among expressions and commands. Inherent concurrency is an

important aspect of our actor language which distinguishes it from other modern

programming languages, in which concurrency must be artificially generated, or

requires special attention from the programmer.

4.3.5.1 Local versus Global State Change

As discussed above, change in Act2 is a local phenomenon. An auor can

change its own behavior, but cannot directly manipulate any form of "global state".

This permits more concurrency by reducing the necessary synchronization. Because

change is local, the only synchronization necessary is for serializers to process one

communication at a time. Allowing change to a global state would require

additional synchronization among actors and transactions, to preserve the integrity

of the global state.

4.3.5.2 Local Rinding versus Assignment

Act2 has no assignment command. In addition, bindings established in an

expression or command, such as create, let, and case-for, are not available outside

that expression or command. Because of this, there are no timing constraints among

distinct expressions and commands. These expressions and commands can be

evaluated concurrently. An assignment command would introduce timing

constraints among commands, requiring them to be evaluated sequentially.

4.3.5.3 Concurrent Commands and Shared Resources

When commands share a resource, such as a serializer, programmers may wish

to rely on additional synchronization. For example, one command might cause

76

• 1*1«». .. I . ,

some actor to change its state, and the other might ask the same actor for some

information. Hie programmer may wish the request for information to reach the

actor after any communications sent to it by the first command have been processed.

A programmer can impose an ordering upon commands using the sequential

command. This should only be used when the programmer explicitly relies on such

timing dependencies.

4.3.5.4 Concurrent Evaluation and Explicit Sequencing

Act2 is specified as an inherently concurrent language. For example,

commands in a command body are evaluated concurrently. Sub-expressions in a

command or expression are evaluated concurrently. In a set of pattern-matchers,

such as in let, case-for, or create expressions, all evaluations of patterns and

expressions and subsequent pattern-matching itself are done concurrently.

Create, case-for, one-of, and if also contain the otherwise clause as a

convenient way to serialize sets of possibilities. [Theriault 82] had a similar

mechanism, but used it as a mechanism for providing a default body. Act2

generalizes this into a full-fledged sequencing mechanism, from which providing a

default is a trivial case. For example, it is easy both to provide a default, as in
(case-for x

(1s (a stack (with top Sit)) do ...)

(otherwise (1s something do ...)))

and to prioritize the sets of possibilities, as in
(case-for x

(1s (a whole-number) do ...)
(otherwise (1s (an Integer) do ...)

(otherwise (1s (a real) do -••))))

77

4.3.5.5 Resource Management

With the amount of concurrent activity produced by Act2, resource

management is important. Act2 uses sponsors for resource management. Every

communication contains a sponsor, which is charged for the processing of the

communication. This requires cooperation from the underlying apiary architecture,

which requires payment for processing each event.

Below is an example of Act2 code which explicitly deals with resource

management. It is simply ä reworking of the example in {section 3.2, page 46}. In

this code, it is the sponsor from the evaluation request which pays for the evaluation

of the contained expression, rather than the sponsor from the first communication

sent to it.
(define (new DELAY-EXPRESSION (with expression =exp))

(create-unse Hall zed
(1s-commun1cat1on

(a request
(with message (= eval wh1ch-1s (an expresslon-eval)))
(with sponsor ass))

do
(reply (create

(1s-commun1cat1on =c do
(let ((value match

(uslng-sponsor s do
(reply (ask exp eval))))) do

(send-to value c)
(become value))))))))

4.4 Act2 Integrates Description and Action

4.4.1 Coexistence of Mechanisms for Description and Action

One important consideration in the design of Act2 is the unification of

mechanisms for description with the imperative mechanisms of the actor model.

Act2 integrates the fundamentals of Act 1 and Omega, which are very different in

78

• r

character. Actl deals in an operational world of message-passing, actor creation,

and behavior change. Omega deals with knowledge acquisition in a lattice of

descriptions, and deduction based on installed relationships among them. It models

change by creating more descriptions, but is incapable of actually implementing

actors which can change. A language suitable for open systems, or concurrent

applications in general, must combine both sets of ideas.

Act2 is built upon the actor model of computation. It has constructs for

transmission of communications, for making simple decisions, for creating actors,

and for self-replacement. Act2 also has actors which behave like atomic descriptions

and instance descriptions, which it uses for their information containment

properties, for their descriptive properties, and for a direct form of pattern-

matching. Act2's abstraction mechanism, the define expression, establishes a

relationship between the two worlds by associating a description with every actor,

which corresponds to the actor's "type". Act2's pattern matching acknowledges this

relationship, serving as a form of "type-checking" when appropriate.

For example, a bank-account actor created with the expression

(new bank-account (with balance 500)) might be described by the instance

description (a bank-account) or by the instance description

(a bank-account (with balance BOO)) if the implementor of the abstraction

wished to allow the balance information to be revealed. The actor could be matched

by a pattern of the form (a bank-account) in either case, and by a pattern of the

form (a bank-account (with balance =x)) in the second case, with the

identifier x being bound to the balance, 600.

79

4.4.1.1 Abstract Syntax for Description and Action

One of the problems in integrating the ideas from Actl and Omega is a set of

apparent name conflicts which arise in the constructs we desire Act2 to have. Note

the relationship between the instance description (a bank-account ...) and the

abstraction instantiation (new bank-account ...). In the instance description,

bank-account is some concept or atomic description. In the instantiation,

bank-account refers to the implementation of bank-accounts, as previously declared

in a define expression.

In addition, flexibility demands that we be able to have arbitrary expressions

as the concepts of instance descriptions, evaluating to atomic or instance

descriptions. It also demands that we have arbitrary expressions denoting the

implementation of an instantiation. Because arbitrary expressions undoubtably

include locally-bound symbols, bank-account is a symbol in both cases, and must

be evaluated in the prevailing evaluation environment at that time.

The resolution of such conflicts is done in Act2 by interpreting bank-account

as a symbol, and broadening our interpretation of atomic descriptions. The

functionality of atomic descriptions is extended such that implementations are

installed in them. This confirms the feeling that there is a relationship between the

concept of bank-account and the implementation of bank accounts.

It does not prevent the coexistence of implementations of different bank

accounts, which can be installed in different atomic descriptions. That is, I can have

my own concept of bank-account, and a corresponding implementation, whereas

you too can have your own concept of bank-account as well as your own

implementation. Act2 will deal correctly with both of them.

Act2 could have introduced operators to denote atomic descriptions and

80

1

implementations. For example, abank-account and ibank-account might produce

atomic descriptions and implementations by performing some calculation, perhaps

looking them up in different environments. This would have reduced readability,

and would have been a less general solution. As it stands now, users could extend

the syntax of Act2 if such expressions were desirable.

4.4.2 The World of Action

Act2 contains constructs for transmitting communications. It has constructs

for creating new actors with specified behaviors and acquaintances. The very nature

of an actor is that of action. It receives a communication, then causes effects to

happen. These effects might be communication transmissions or actor creations.

Primitive actors provide a message-passing, actor-based interface to the underlying

hardware. For example, some primitive actors might serve as an interface to a

keyboard, a screen, or a robot arm. In response to communications, they might read

characters, display information, or construct a ham sandwich.

4.4.2.1 Change

One important effect an actor can have is to cause itself to be replaced by

another actor. This is such a significant concept that Act2 makes a fundamental

distinction between serializers and unserialized actors. Serializers are Act2's method

of dealing with change. They are treated very differently in most aspects of their

existence, such as pattern-matching, equality tests, copying, migration, and

concurrency.

4.4.2.2 Local Changes versus Global State Changes

As we have mentioned earlier, all change is local to an actor. This is done in

81

... —>.>~-•

preference to using a state transition model, in which change happens to some

global state. A serializer can replace itself with another actor, in response to some

communication. We have seen the benefits of this for concurrency and software

engineering.

4.4.2.3 Maintaining Computation Histories

Act2 provides a biography mechanism for recording the computation history

of actors. This allows actors to keep track of the communications they receive and

what they do in response, in a manner such that the effects of receiving the

communication can be undone. This feature is an adaptation of the work reported

in [Jefferson, Sowizral 82]. A serializer which has maintained its history can be

rolled back to some previous state, or can report on previous states.

4.4.3 Descriptions as Information Containers

Part of the integration of Omega descriptions in Act2 is the use of instance

descriptions as information containers. From this perspective, instance descriptions

can be thought of as aggregate data types, or type constructors. They, like

sequences, allow a programmer to express a collection of actors, without

instantiating any special abstraction.

An instance description can be thought of as a flexible record structure. The

concept serves as a tag indicating type. The attributes correspond to record fields,

where attribute relations are field names, and where attribute fillers are field values.

In this capacity, instance descriptions are very convenient for packaging actors

and representing information. They are especially useful as messages in

communications. The use of instance descriptions for this purpose is especially

82

^u tbaatfOaMttü^Mtfifa

beneficial, in view of Act2's ubiquitous pattern matching. Even more important is

the potential it allows. When inheritance and deductive mechanisms are embedded

in Act2, it may be possible to have different perspectives on incoming information,

or to coerce the incoming information into a usable form.

4.4.4 Description of Actors: Data-typing and Specification

4.4.4.1 Description of Actors

Part of the integration of Omega descriptions is the use of those descriptions

to describe actors, much like types in common programming languages. This makes

pattern-matching work nicely for both instance-descriptions and arbitrary actors. It

also makes the idea of type potentially much more powerful and general than

simply that of a tag, as it is in many existing languages. It opens an avenue for

making assertions and deductions about the properties of a type and about the

relationships among types, when inheritance and deduction mechanisms are added

to Act2.

4.4.4.2 Behavioral Types

An actor's type is not simply a tag, but a description of the actor. Although

Act2 itself does not implement assertion and deduction mechanisms, the perspective

it takes on types is very important in the philosophy of the language, and provides

tremendous potential for a very powerful and flexible type system. The notion of

type in Act2 is of describing the behavior of an actor. An actor's type provides

reliable information about the semantic properties of actors. With this philosophy

and perspective, actual type mechanisms can range from simple descriptions and

exact match, which looks much like a tag-oriented scheme, to behavioral

83

, 11.. I.II I J»

specifications ranging from partial to total descriptions of an actor's behavior. The

full flexibility and generality of the description system can be brought to bear in the

description of abstractions, including incremental and partial description and

inheritance of properties from other descriptions. The type system can be arbitrarily

finely-grained, and have a very flexible notion of type equality and type

conformance. A form of pattern-matching can be used which treats the pattern

match as a goal, then uses mechanisms for deduction in the description system for

establishing or refuting that goal.

4.4.4.3 Controlling Visibility

By default, die description associated with an actor is simply a description with

no attributes, such as (a bank-account) rather than a more explicit one such as

(a bank-account (with balance 600)) in order to preserve the opacity of the

actor. Act2 provides alternative expressions for creating actors, so a programmer

can allow the extra information to be revealed, to allow the extra information to be

extracted in a pattern-match. Deductions can potentially be made which involve

these attributes and fillers. One feature of this for serialized actors is that it allows

convenient extraction of a consistent state.

4.4.5 The Many Uses of Pattern Matching

Pattern-matching plays a fundamental and pervasive role in Act2. It is used

for extracting information from instance descriptions, for authentication, for type-

checking and extraction of information from actors, for determining equality of

actors, and for binding variables to actors. It is used for acceptance of

communications, for dispatch on expressions, for exception-handling, and for

decision-making. It is also used in the instantiation of abstractions, in the evaluation

of new expressions.

84

^ . i

The pattern-matching implemented by Act2 involves no deduction

mechanisms, and is efficient when compared to deduction. Act2 makes it possible

to embed deduction mechanisms in the language and implement an extended form

of pattern-matching which makes use of them. This means that the full power of a

description system like Omega can potentially be employed in the pattern-matching

process.

4.4.5.1 Pattern-Directed Recognition and Extraction

In Act2, the standard mechanism for recognizing actors, which may or may

not be instance descriptions, is to use pattern matching. Pattern matching works

both on descriptions, using simple specialization axioms, and on arbitrary actors,

using their associated descriptions. Dispatching on the characteristics of an actor

can be done using pattern-matching. Recognizing communications can be done by

pattern-matching.

4.4.5.2 Security

Security is an important part of modern programming languages. Type-

chec<ing allows detection of type errors, a very common nuisance in programming.

Act2's abstraction mechanism allows the implementor to restrict what actual

parameters are bound to what formals. Act2 allows the types of objects to be

declared and performs type-checking wherever a programmer puts restrictions.

Restrictions can be put anywhere a pattern or variable-binding can appear.

Act2 allows the programmer to refrain from making restrictions: to have

objects described as something, and to make no restrictions or mild restrictions on

bindings. It also allows a programmer to make very comprehensive restrictions on

matching. They not only serve to allow more complete type-checking, but also

85

provide very good documentation for programmers reading the code. Presence of

type information increases the potential for optimization.

4.4.5.3 Polymorphism

Abstractions are typically defined in terms of sub-abstractions. Polymorphism

is that property of being able to use as a sub-abstraction any of a set of abstractions

conforming to some expected behavior, rather than a single, pre-specified

abstraction. This property is often thought of in terms of overloading, generics, and

parameterized abstractions. Polymorphism is provided by Act2 by its use of

message-passing semantics as its fundamental means of communication. This is

similar to the way Smalltalk and Simula provide polymorphism. As long as an actor

responds to all the right messages in all the right ways, it can be used. For example,

an operation can be declared, which operates on some set of arguments. The

operation can be performed successfully on any actors, as long as they behave in the

correct manner.

4.4.5.4 Authentication

Act2 addresses the issue of authentication with atomic descriptions. Each

creation of an atomic description, (new concept (with name ...)), creates a new

atomic description which will not match any other atomic description. Everyone

shares enough atomic descriptions so that they can communicate with each other,

enough to mail atomic descriptions to each other.

Suppose you give someone access to a bank account you created — one

implemented in {section 2.3, page 34}. Unless you give him access to the atomic

descriptions used as the concepts in the communication-handler patterns (such as

balance, deposit, and withdrawal), the bank account will not accept any

86

communication he sends to it. Remember that his atomic description with name

withdrawal is not the same as the one with which you defined your bank-account

abstraction. You can send him your balance atomic description, which he can bind

to some identifier h1s-balance, and can then obtain your account's balance by

sending it a request with message (a h1s-balance). He will still, however, be

unable to make withdrawals, because he does not have your w1 thdrawal atomic

description. Because of static scoping, you can define operations with access to

certain bank account operations which a user of the operation does not have access

to.

4.5 Act2 and Open Systems

4.5.1 Suitability for Open Systems

Prelude must have the full generality and flexibility of a language suitable for

open systems [Hewitt, de Jong 82]. Act2, as a substrate for Prelude, must also be

suitable for this style of programming, by realizing a suitable model of computation,

providing sufficient fundamental mechanism, and providing a potential for

embedding appropriate higher-level mechanisms and policies. A requirement for

languages suitable for open systems is the ability for independent programmers to

communicate with each other, selectively share independently-produced software

and data, and merge subsystems together as integrated wholes. Open systems are

characterized by the coexistence of independently-conceived and evolving software

applications which need to cooperate in flexible but controlled ways. These

applications might be autonomously owned by mutually suspicious organizations

which never-the-less wish to share information and information processing abilities

to some extent.

87

We believe Act2 is suitable for open systems. It provides a solid foundation

upon which more sophisticated languages and applications can be implemented. It

provides mechanisms for description as well as for causing effects and change. It

also provides for a natural coupling of descriptions and actor systems. Its use of

descriptions as a "type" mechanism means its fundamental perspective on types is

quite flexible and potentially very powerful. With the addition of inheritance and

deduction mechanisms, such a "type" can be extended to include extra semantic

properties of the abstractions and relationships among abstractions. In the limit, a

"type" might include a full specification of the abstraction. Similarly, this allows

very flexible forms of identifier declaration, type checking, abstraction instantiation,

and parameter passing. These features are extremely useful for programming-in--

the-large. The potential flexibility of this type system would allow for the coupling

of independently conceived and independently-named application sj stems, even in

the presence of name conflicts.

Act2 supports controlled sharing and cooperation among independent

systems. Part of the bottoming out of instance descriptions is a set of concepts

which can be understood by all users of Act2. This enables independent

programmers to communicate. Each programmer operates in his own environment,

which is an actor itself. All environments are distinct. The opacity of actors insures

that they cannot be compromised directly, without sending communications.

Authentication is a crucial part of controlled sharing among separate

applications. Act2's atomic descriptions provide this important functionality. All

atomic descriptions created by defconcept or (new concept ...) are distinct and

do not match each other. This turns instance descriptions into key-based access

mechanisms, in addition to the functionality they already have. Built into Act2's

recognition facilities are mechanisms suitable for authentication of incoming

communications. Because Act2 expressions are statically scoped, the environment

used to resolve names used in Hie concepts of patterns in an actor's implementation

will be the environment in which the actor was defined. The actor will not be

compromised simply by using it in another environment.

One of the most important requirements for languages suitable for open

systems, and for Act2 in particular, is sufficient generality to express desired

concurrent computations. By virtue of its actor foundation, Act2 inherits the

properties shown about the actor model [Clinger 81b]. We have also demonstrated

some aspects of its generality with initial experiments. For example, with our

applicative language experiment, we showed that Act2 is more general than

applicative languages for concurrent systems. We also implemented a shared

checking account in Act2, which was suitable for concurrent systems could be

shared among several owners.

This chapter has discussed a number of issues in the design of Act2. A few

more issues are discussed in an appendix {section F, page 205}. All of these are

germane to languages for open systems. The choices made in Act2 for dealing with

these issues were all made with the goals of suitability for open concurrent systems,

forexpressibility of high-level applications, and for support of software engineering

principles.

4.5.2 Synergy

It is interesting to note that many of the design decisions for Act2 had a

bearing on several issues. Also, different design decisions had pleasant interactions

which went beyond simple additivity. As a simple example, lexical scoping is not

only more natural for programmers, but combines with our notion of uniqueness of

atomic descriptions and pattern-matching to provide authentication. Our

relationship between descriptions and arbitrary actors provides a very flexible type

89

• •

system. Ii also makes pattern-matching suitable fur type-checking, information

extraction, identifier binding, accepting communications, catching complaints, and

dispatching on the values of expressions.

90

r • ",""11 •'——

Chapter Five

Implementation Issues and Mechanisms

5.1 Bottoming Out

The previous chapter described issues which were explored in the design of

Aet2, assuming the actor model of computation as a foundation. The model »

conceptually elegant and sound, and is inherently machine-independent. An actor

language implementation, however, must bridge the gap between this conceptual

model and a concrete computer architecture rooted in physical hardware. The actor

model of computation, by its very nature, requires careful implementation for a

practical realization. There are many potential circularities which must be

unraveled so useful computation can take place. The following paragraphs will

point out some of the circularities which might exist in a naive implementation

attempt

Actors interact by transmitting communications to each other. The

communications themselves, as well as the messages they contain within them, are

also actors. Our conceptual model dictates that actors cannot directly manipulate or

read each others' contents. Potentially, an actor receiving a communication must

send it (the incoming communication) further communications to find out what's in

it, and the communication itself faces the same problem when it receives these

communications. A good implementation must break this circularity in a general

and flexible way.

In the conceptual, machine-independent actor model, every actor has a script,

which is also an actor. Because it is an actor, the script itself must also have a script.

91

It is obvious ili.it there must exist primitive actors at some level, but a proper

solution must be sufficiently flexible to let programmers reference and manipulate

scripts or define their own script actors.

Instance descriptions are Act2's primary information containment and

recognition facility. To construct an instance description, we need an appropriate

atomic description. To get the atomic description, we need to ask an environment

for it, since all we have is its name. To ask the environment for it, we must construct

an instance description for a message.

For a practical implementation, we represent numbers, symbols, and lists as

themselves — as lisp objects. Such primitive actors must be able to behave like

actors do, receiving requests and transmitting replies or complaints in response.

These actors must be made to behave like Act2 numbers, symbols, and lists.

5.1.1 Rock-Bottom Actors

Much of the bottoming-out process must be done in intimate cooperation with

the underlying computer architecture. The Apiary recognizes certain rock-bottom

actors, such as numbers, lists, and symbols, whose concrete representation is

inherited directly from the underlying implementation language, Lisp. These

concrete representations do not contain scripts for processing incoming

communications. When a worker is instructed to transmit a communication to such

a primitive actor, the worker is responsible for handling the communication in some

appropriate way. The worker itself can intercept and directly handle a few special

requests intrinsically associated with these actors. The rest of the communications

must be handled by Act2.

Part of the process of installing Act2 is the installation of actors to serve as

92

representatives for each kind of rock-bottom actor. When a worker cannot directly

handle a communication for a rock-bottom actor, it asks a representative to handle

the communication on behalf of the rock-bottom actor. The representative is

responsible for realizing the expected behavior.

5.1.2 Scripts

The Apiary architecture supports the creation of actors with scripts composed

of Lisp functions. These primitive scripts correspond to microcoded abstractions in

many other programming languages. Many of the actors used in the

implementation of Act2 have scripts which were written in Scripter, which compiles

into Lisp.

Act2 deals with scripts in terms of abstract syntax trees — hierarchies of actors

which represent Act2 code. Actors created by instantiation of uncompiled Act2

definitions have scripts composed of abstract syntax trees. These abstract syntax

scripts must be integrated into the Apiary implementation, so these scripts can run

on the Apiary. This is done with a special kind of primitive script with

acquaintances including the abstract syntax script, the definition environment and a

description of the actor. These actor-tased scripts coexist with and are implemented

using the primitive scripts.

5.1.3 Communications

Communications are primitive actors which are recognized and manipulated

directly by the Apiary architecture. They serve simply as a package for transmission

of information between actors, and are recognized as requests, replies or complaints.

Communications contain special acquaintances, such as a message, a sponsor or a

customer.

93

AD-A132 326

UNCLASSIFIED

ISSUES IN THE DESIGN AND IMPLEMENTATION OF ACT2(U
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB D G THERIAULT JUN 83 AI-TR-728
N00014-80-C-0505 F/G 9/2

i

LO £ «a m

i.i.

22

2.0

1.8

Ji£ I» U u*

MICROCOPY RESOLUTION TEST CHART

NATIONAl BUMAU Of STANDARDS-196 J A

Y lllllllll-1*^'"-h,t',^,"Ut—-1 -

5.1.4 Instance and Atomic Descriptions

When an actor receives a communication, it typically attempts to recognize the

communication's message by pattern-matching. The patterns used are quite often

instance descriptions. An instance description serving as a pattern needs to ask the

message some questions in order to discover whether it should match. Considering

the common case where the message is an instance description, we must examine

what might happen when an instance description receives a communication

containing another instance description as a message. Does it naively exhibit the

above behavior? Somewhere, we must break the circularity in which an instance

description sends an instance description another instance description in order to

find out what's in it. Much cooperation is needed from the Apiary to bottom out

instance descriptions. In that respect, they resemble primitive actors like numbers

and symbols.

Part of the cooperation we require from the Apiary is a primitive operation

which determines, without causing any events, whether an actor's script is a special

instance description script. If the message in an incoming communication is such a

special instance description, its parts can be extracted directly by special Lisp

("micro-") code without causing more events. This special Lisp code can extract the

instance description's concept as well as its attributes and their parts, using its

knowledge of the the format in which instance descriptions are represented.

Instance descriptions are represented as primitive, scriptless data structures easily

recognized by Lisp code l

This also means that these instance descriptions arc very much like the primitive, rock-bottom
actors. The Apiary must recognize primitive instance descriptions and make sure any
communications transmitted to them arc handled. Act2 must install representatives which handle
communications directed to thcin on behalf of primitive instance descriptions.

94

'•• '— • -'••"

Once the parts of the instance description have been extracted, the only

barrier to understanding its meaning is the concept. Using atomic-description

concepts exclusively would require causing at least one event to find out what it

meant. In order to break the circularity we've just described, it is crucial that

somewhere along the line some actor must be able to accept and recognize an

incoming communication without causing any further events. Therefore, for some

low-level instance descriptions, a symbol is used as the concept instead of an atomic

description. All relevant information can be extracted from these easily-recognized

"primitive" instance descriptions without causing any events. In an Act2

implementation, we write Lisp code for accepting communications. If it can extract

all necessary information directly, it does so. If it cannot — because the concept of

the message is an atomic description or because the message is not a directly

accessible instance description — it actually resorts to a message-passing protocol

for obtaining the necessary information.

Given that we have instance descriptions with concepts that can be either

symbols or atomic descriptions, and that we want user-written code to be able to

send messages to any actor, we need some uniform way to denote both kinds of

instance descriptions. Moreover, we do not want to require users to distinguish

between them. Once again, we have increased the functionality of atomic

descriptions in order to solve yet another fundamental problem. This time, we add a

piece of ("concept-creation") information which tells whether to create instance

descriptions with a symbol or an atomic description for a concept. When an

expression denoting an instance description is asked to evaluate itself and the sub-

expression denoting the concept evaluates to an atomic description, it asks the

atomic description for an appropriate concept. Based on its concept-creation

information, the atomic description replies either with itself or with the symbol

which is its name. By default, defconccpt and (new concept ...) create atomic

95

descriptions which indicate that the atomic description should be used for concepts.

Another expression, (new primitive-concept ...), creates one which uses the

name, a symbol, for concepts.

5.2 Extensibility from a Listen-Loop

The mechanism for extension of Act2 is the Act2 listener itself. This loop is

implemented in an actor-based way, which naturally provides much flexibility.

When the loop is started, an environment becomes associated with it. This is the

environment which the listener uses to obtain keyword environments for parsing

and to for resolving names when evaluating expressions. The listener first reads in a

surface syntax representation — list structure, symbols, and numbers — which

denote an Act2 expression. It then asks the surface syntax actor to parse itself into

an abstract syntax actor representing the expression in a meaningful way. When this

has been successfully completed, the listener asks the abstract syntax actor to

evaluate itself as an expression, using the prevailing environment for resolving

names to the intended actors. When the abstract syntax actor has replied or

complained, the listener asks the response to print itself, then begins the next

iteration.

The actor-based parsing technique is responsible for Act2's extensibility.

When the listener asks a surface syntax actor to parse itself, it provides two

environments to aid with the parsing. Symbols and numbers can ignore these

environments, because they typically parse directly into themselves. Lists, on the

other hand, represent more interesting expressions and commands. In order to

increase the flexibility of parsing and to distribute the knowledge about different

expressions and commands, lists solicit the help of more specialized parsers. The

two parsing environments help realize this behavior by mapping symbols used as

%

.nil..» i ^ tiMa^ —

1 •

—_*

keywords identifying a construct to an actor which can parse appropriate list

structure into an abstract syntax actor representing the construct. One of these

environments establishes expression keywords, and the other establishes keywords

for commands. Syntactic extension of Act2 can be done simply by extending these

environments appropriately. With this technique, lists can parse themselves simply

by scanning themselves from left to right, looking for a keyword, then can ask the

associated parser to take care of the rest of the parsing.

5.3 Providing both Positional and Keyword-Based Instantiation

The desirability of keyword-based and of positional notation for the

instantiation of abstractions has already been discussed {section 4.2.3.4, page 61}.

Act2 prefers the use of keyword-based notation, using the new expression. It also

makes some provision for the use of positional notation, but discourages its use. For

example, when (factorial 3) attempts to parse itself as an expression, it discovers

that there are no expression keywords within it. As a result, it parses into an abstract

syntax actor representing

(ask factorial (an Instantiate (with arguments [3]))). Notice that this

would handle multiple arguments nicely. The factorial atomic description will

accept the instantiate request, then will proceed to match the arguments, in order,

with the attribute fillers in the new expression template from the definition of

factorial. From there, the instantiation will proceed as if the instantiation had been

written as (new factorial (with number 3)), rather than as (factorial 3),

assuming the factorial had been defined as in

(define (new factorial (with number ...)) ...). There is a risk in using

positional notation in this way, however. If any subexpression should happen to

look like an expression keyword, the expression would be sent to some undesired

parser. For example, taking the factorial of the actor bound to the identifier a

97

tfi*t»v •—- J

would be written (factorial a), and the list structure would be sent to a parser for

instance descriptions2. Of course, it would be possible to extend the language with a

new kind of expression with prefix notation which would have the right effect. For

example, an expression of the form (call factorial 3) or (do factorial 3)

could parse into abstract syntax for

(ask factorial (an Instantiate (with arguments [3]))). The leading

keyword would eliminate the possibility of confusion.

5.4 Making Composite Constructs Work

One-of, case-for, let, if, and using-sponsor are examples of Act2 constructs

which can be used both as commands and as expressions. They provide much

flexibility and convenience in the language. We have already seen the if construct

used as an expression in an implementation of a factorial actor {section 2.1, page

31}, and as a command in an implementation of an account actor {section 2.3, page

34}. If necessary, please refer to {section C.9, page 148} for a description of these

constructs.

The commands which are allowed in the bodies of these constructs, and the

interpretation of some of those commands, depend upon the context in which the

constructs appear. Our implementation must resolve these problems and must

enforce additional restrictions required by each context. For example, we never

want to evaluate more than one become command, because that is semantically

incorrect (not to mention confusing). If we encounter no become command in a

serialized communication handler, we must be aware of when processing has

2
Fortunately, Act2 would have warned the programmer about a previous attempt to bind a,

because it is used as an expression keyword.

98

^-t-i—».

• -

finished, so we can prepare the seriali/er for accepting another communication. No

become command should ever appear in an expression body context or in a

communication handler for an unserialized actor. For constructs used as

expressions, we want to evaluate exactly one reply or complain command, which

represents the response from the evaluation of the expression. In the context of a

communication handler, reply and complain commands transmit communications to

the customer or complaint department from an incoming request. All of these

problems must be taken care of in a suitable implementation of these constructs,

even in the face of syntactic and semantic extensions by users.

The way we deal with these problems in our Act2 implementation3 is to

introduce a notion of effects, which represent the evaluation of commands.

Whenever a command receives an evaluation message, it evaluates itself to the best

of its ability, then replies with an effect representing what has been done and what

remains to be done. An effect can be a simple instance description containing some

information by convention, or can be a sequence of effects. For example,

commands such as reply-to, which have enough information to completely evaluate

themselves, reply with (a completed-command-effect). Because it does not

contain target information, a reply command such as (reply message) evaluates

message, wraps it in a reply communication, then replies to the evaluation request

with (a send-effect (with communication ...)). A become command such as

(become exp) evaluates exp, then replies to the evaluation request with

(a become-effect (with replacement ...))• A composite command replies to

an evaluation request with the sequence of effects resulting from the body of

commands it evaluates.

3 Details can be found in the mcta-circular description in {section 1), page 163}.

99

——

The other portion of this solution is the processing ofeffects. There are two

contexts in which commands may be evaluated — in expression bodies and in

communication handler bodies. When composite constructs are evaluated as

expressions, they select a body to evaluate, ask the commands to evaluate

themselves, and collect the resulting effects in a sequence. It then recursively

processes this effect, ignoring completed-command-effects, complaining if a

become-effect is seen or unless exactly one send-effect is seen. If a single send-

effect is left at the end of this process, the communication it contains is sent to the

customer or complaint-department of the evaluation request, as appropriate. When

an actor accepts a communication, the body of the chosen communication handler is

evaluated, and the effects are collected in a sequence. It then recursively processes

this effect, ignoring completed-command-effects, transmitting the communications

in send-effects to the customer or complaint department if the incoming

communication is a request (or complaining if it isn't), and complaining if more

than one become-effect is seen. Afterward, if a become-effect has been

encountered, the (serialized) actor can change its state.

5.5 Serialized and Unserialized Actors

Serialized and unserialized actors are actually represented and manipulated

differently by the Apiary architecture. For example, no synchronization is necessary

for unserialized actors, so they can process different communications concurrently,

and can be copied indiscriminately. Different copies of an unserialized actor can

exist on different workers, and are recognized as "the same actor," for purposes of

matching and equality tests. Serialized actors, on the other hand, need

synchronization. They can only process one communication at a time. Because they

can change, serializes cannot be copied arbitrarily.

100

^^^—• ^— _

When a communication is sent to a serialize!-, it is enqueued on the serialized

actor's incoming communication queue for processing. If the actor is not processing

another communication, it will begin processing this one. When it has finished —

and it is necessary for it to know when it has finished — it must prepare for

processing the next communication. If it must become another actor, it forwards

any communication in its queue to that actor. Otherwise, it begins processing the

next communication in the queue. If the queue is empty, the serializer goes into a

dormant but receptive state until it receives another communication.

5.6 Missing Information

Some Act2 expressions and commands do not require a programmer to

explicitly denote all of the information needed for complete evaluation of the

construct. The missing information is instead obtained implicitly from the context

in which the evaluation occurs. For example, any construct for sending a message,

such as reply-to, complain-to, or ask, must provide a sponsor to pay for the

communication and its processing.

A new expression inside a become command need not fully specify the new

actor, if it is of the same type as the current actor. Suppose we define a shared bank

account actor with a define expression of the form,
(define (new checking-account

(with balance =b)
(with owner =o))

If we have a become command like

(become (new checking-account (with balance x))) which does not mention

the owner acquaintance, Act2 will create the new checking account actor with the

same owner. What we wrote is assumed to mean

101

I
-• i M •

• - -"" - urn

f

(become (new chocklng-account
(with balance x)
(with owner o)))

The missing information is filled in from the properties of the current actor.

In both cases, the way the information is provided to the commands is similar.

An actor receives a communication, and chooses a body of commands to evaluate

{section D.10.4, page 192}. The evaluation message it sends to each of the

commands contains not only an evaluation environment, but also includes

sponsorship information and a description of the instantiation with which the actor

was created {section D.10.7, page 196}. This extra information is available to any

command which cares to look at it. Implementations of abstract syntax actors are

expected to relay this information. The way the become command transmits extra

information to the new expression is to include it in the expression-eval message it

sends to the expression it contains. Once again, abstract syntax actors for

expressions are expected to relay any extra information in eval messages.

Another form of missing information in Act2 is the provision of default

communication-handlers for standard protocols required of all actors. For example,

all user-defined actors will respond to requests with messages such as

(a match ...), whether or not the implementor explicitly provides one. A

programmer can explicitly handle any of these messages by including her own

request handler (which looks just like any other request handler) for it in the first set

of handlers in a create expression. Otherwise, Act2 will handle them immediately

after looking in the first set of handlers for one which can accept the

communication. These default handlers are built into the evaluation of create

expressions. For more details, see {section D.10.4, page 190} and {section D.10.4,

page 191}.

Yet another transfer of extra context information occurs on installation and

102

->-r-_^ .^^...^^^^.,„..,.-.-.

instantiation of abstractions. This is the mechanism by which "tvpes" are associated

with newly-created actors, even though the create expression itself has no such

information. When a define expression, such as

(define (new account (with balance =b)) exp) is evaluated, the abstract

syntax for the new expression is asked to install the abstracted expression with the

prevailing environment {section DA, page 168}. This asks the account atomic

description to install, among other things, the instance description

(an account (with balance sb)). When an expression such as

(new account (with balance 50)) is asked to evaluate itself, it retrieves the

installed implementation information {section D.4, page 169}. It creates an

instance-description, (an account (with balance 50)), which it matches against

the retrieved description, (an account (with balance =b)), then extends the

definition environment with binding of b to 60. Finally, it asks the abstracted

expression to evaluate itself in the extended environment, with the description

(an account (with balance 60)). When asked to evaluate itself, a create

expression will use this description information if it is present; otherwise, it will use

something as its description.

5.7 Actors and Types

When an actor is created as a result of the evaluation of a new expression, the

create expression which actually creates the actor is provided with a description of

the instantiation, such as (an account (with balance 50)). It remembers all or

part of this description as a descriptor for pattern-matching. This corresponds to

data types in some programming languages. By default, it would only use

(an account) as a descriptor, to preserve the opacity of the actors. A programmer

may also wish to make the attributes visible. Variations of the create expression —

the create-visible and crcate-visible-unserializcd expressions — do this, using the

103

fci \h iL ••MWMta . .
-*• • • • -*-

-^•»•Wl I I

whole instantiation description as a descriptor for the newly-created actors. The

extra attribute information is then available for extraction in pattern-matching.

5.8 Making Pattern-Matching Work

Although basic pattern-matching in Act2 involves no deduction, it does cope

with both simple matching of instance descriptions and matching which corresponds

to type-checking. By "simple" matching of instance descriptions, we mean that the

concepts match without deduction, that all attributes in the pattern are present in

the object, and that corresponding fillers match "simply". An instance-description

used as a pattern will match any instance description which is a simple specialization

of it, and will match any actor which it describes (any actor whose descriptor

matches).

Whenever pattern-matching occurs, there is always the possibility that part of

the matching process will involve binding symbols to actors. The pattern-matching

process involves a pattern, an object to match, and an unserialized environment layer

which is extended with symbol/actor bindings as the match proceeds. Pattern-

matching happens as follows: the pattern if sent

(a match (with object 0) (with bindings B)), where B is (new empty-layer).

What happens from there depends on the behavior of the pattern.

If the pattern, P, is an instance description, the effect of the match will depend

upon whether or not the object, 0, is an instance description. If it is an instance

description, we would simply want to compare them; otherwise, we wish to perform

a "type check" of 0. The pattern has no way of knowing what to do, so it has the

object do the work by sending it

(a converse-match (with pattern P) (with bindings B)). If 0 is an instance

104

r ——•

description, ii will do a simple instance description match. Otherwise, the default

handler provided by Act2 for converse-match will simply relay the

converse-match request to the actor's descriptor, which is an instance description

and will do a simple instance description match.

When an instance description, 0, receives a converse match with bindings B

and with pattern P, it asks the pattern for its concept, which it asks to match os

concept with bindings B. Next it asks P for a sequence of attribute relations. For

each relation: if 0 has no attribute with that relation, the match fails. If it has one, it

asks P for the corresponding filler pattern, which it asks to match the filler of its own

corresponding attribute. The bindings resulting from each match are fed into the

next, until the matching is finished. If any of the sub-matches fails, the whole match

fails; otherwise, the match succeeds with the bindings established during the filler

matches.

5.9 Compilation

Act2 views Compilation as an unobtrusive optimization technique. A user

should see no functional difference before and after compilation, even when

debugging code. Compiled code should retain enough information about the source

code from which it was generated to provide intelligible interaction with the user,

who only deals in terms of the source code. Compilation is done in terms of

abstractions. For example, an abstraction defined in a manner such as

(define (new account ...) ...) is compiled simply by saying

(ask account (a compile)). The atomic description then asks its installed

implementation to perform the appropriate transformations.

Compilation could be done with arbitrary sophistication. Even the simplest

105

«Mi

 wi

forms of compilation can provide substantial performance improvement. One

optimization is to eliminate the transmission of as many evaluation and match

messages as possible by inline expansion of the code from abstract syntax objects.

Another is to switch from deep binding of free names in the definition environment,

to straight indexing of acquaintances. Performing these two transformations should

provide a large return on investment by substantially reducing the amount of

message-passing that goes on. More optimizations can be added for economizing on

events, and more conventional optimization techniques can be brought into play.

5.10 The Ubiquitous Atomic Description

It is worth a brief enumeration of the functionality of atomic descriptions, to

gain a better perspective of just how useful they are in our implementation of Act2.

First of all, of course, they behave like atomic descriptions, representing some

abstract concept or individual in some user's model of a world. Because of tliis, they

serve as suitable concepts for instance descriptions. Atomic descriptions are used as

part of Act2's machinery for establishment of abstractions. Definition of new

expressions involves installing implementation information in an atomic description.

This contributes to a smooth coexistence of new expressions and instance

descriptions. Atomic descriptions contain information pertaining to the creation of

instance descriptions, contributing to the solution of the bottoming out problem for

instance descriptions. In addition, the uniqueness and opaqueness properties of

atomic descriptions combined with their use as instance description concepts

provide:; an authentication mechanism for controlled sharing of actors in open

systems. Compilation is done in terms of atomic descriptions. To improve the

performance of a user-defined abstraction declared as

(define (new foo ...) ...) we simply ask the instance description, foo,

(a compile). Atomic descriptions help make clear the relationship between actors

106

teMMMHMMa^^i^

und descriptions of those actors. They also provide a tremendous organizational

function for an implementation of the language.

107

i
«^ «_ _^ -•

Chapter Six

Conclusion

6.1 Summary

Act2 is a highly concurrent programming language designed to exploit the

processing power available from parallel computer architectures. The language

supports advanced concepts in software engineering, providing high-level constructs

suitable for implementing artificially-intelligent applications. Act2 is based on the

Actor model of computation, consisting of virtual computational agents which

communicate by message-passing. Act2 serves as a framework in which to integrate

an actor language, a description and reasoning system, and a problem-solving and

resource management system.

We have completed a design of Act2 and have implemented a preliminary

version of an Act2 interpreter. The development process was interesting in its own

right. In the absence of Scripter, the language we eventually used for implementing

Act2, we were forced to complete the design without experimenting with an

implementation. Instead, we created and evolved a meta-circular description of

Act2 — an implementation of Act2 in itself. This served as our primary design tool,

as our informal language specification, as our design documentation, as exploratory

Act2 code, and as a medium with which to explore implementation strategies for the

language. This was followed by an implementation in Scripter of a variation of a

subset of the Act2 language, which served as a minimal-inertia test bed for ideas

before a full-scale implementation was begun.

Act2 was designed to address basic actor language issues, and to be

108

- I
i

ilmi i« mm i

V.

' in i mtunw iMüi^flMiii .*• i II I II— Mill !•!•

mm• Ml

syntactiailly and semantieally extensible. Because of this, it can serve as a substrate

for embedding more sophisticated language features — in essence allowing language

designers to tailor their own languages, concentrating on the issues and mechanisms

they care about and taking for granted the more fundamental issues which Act2 has

already addressed. Because of these open-ended requirements, generality and

flexibility were considered the most important issues in the design and

implementation of the language. Act2 must have sufficient expressive power to

implement as broad a range of actor systems as possible, and must be sufficiently

flexible to permit (and encourage) sophisticated and fundamental extensions as yet

unanticipated.

Act2 is based strictly on actor semantics. As a result, the language can exploit

its well-defined, formally specified foundation. One obvious advantage is the

unification of procedural, data, and control abstractions. Another is the inherent

machine-independence and concurrency of the model, as well as the tremendous

flexibility of asynchronous, unidirectional, buffered communication primitives. The

permeation of the actor model down to the fundamentals of the language itself give

it much generality. The emphasis on communications makes the language suitable

for implementing open application systems.

Act2 integrates mechanisms for description with mechanisms for causing

action and change. It uses descriptions for their information-containing ability, as

well as for describing actors. The result is a very powerful and flexible notion of

"type", and use of the pattern-matching paradigm to provide an extensive range of

functionality for the language. Pattern-matching is used for recognition of actors,

extraction of information from actors, binding identifiers to actors, accepting

communications, authentication, catching complaints, dispatching on the values of

expressions, type-checking, parameter-passing, and comparing actors.

109

- n i mmttam iA

1 •••" " mmmmmmm • ••• •> „

Aci2 decouples syntactic issues from semantic issues. This helps isolate the

related sets of issues, so they can be addressed separately. Our approach

immediately provides several advantages. Extension of the language is natural and

easy, consisting simply of extending an appropriate environment with a binding of a

new keyword symbol to a parser for the expression. It is possible to have alternative

syntaxes for the language, and to have them coexist. It is more convenient to

develop presentation and editing tools which work on abstract syntax, providing

different perspectives on and different concrete manifestations of the abstract

syntax.

Act2 supports modern software engineering principles. An interpreted,

interactively oriented language, it encourages a conversational style of

programming. English-like, but structured, syntax increases readability. A single

abstraction mechanism (the define expression) unifies the ideas of procedural, data,

and control abstraction. The mechanism for instantiation of abstractions (the new

expression) labels each parameter. Act2 allows programmers to declare and check

the types of actors denoted by identifiers or expressions. A very flexible notion of

"type" ranges from no type at all to a full specification.

6.2 Design Philosophy

There was a definite perspective from which we approached issues, problems,

and proposed solutions during the design of Act2. There was always a deep concern

for generality and flexibility. There was a concern for programmability and

economy of mechanism. This raised such questions as:

110

. -

Can this feature allow more to bo done?
Can parts of these mechanisms be replaced by user-defined actors?
Can these mechanisms be combined easily to provide new functionality?
Can this functionality be achieved with existing mechanisms?
Can this be done more easily and naturally?
What new mechanisms need introduction?
How do they interact with other mechanisms?
Do they address other issues?
Can we now remove or hone down some other mechanism?
Is this construct natural to use?
Does it do enough?

It was often necessary to postpone major decisions until others had been

made. Similarly, it was sometimes necessary' to reconsider previously made

decisions in light of new ones. Often what initially seemed like a sticky problem,

when left alone for a while, would eventually be at least partially solved by solutions

to other problems. In fact, the synergy of concepts and mechanisms in the final

product is a testimonial to the power and applicability of the underlying ideas,

which were previously developed by the Message Passing Semantics group.

6.3 Future Work

There are still many problems which need to be resolved in the design and

implementation of Act2. We'll pick an obvious example — attribute relations are

currently used directly, without evaluation. It is clear that at least some evaluation

will be necessary in the future, to allow attribute relations such as:
(with (owner of possession) fred)
(with (new ...) sx)
(with v =x) ;; where "v" 1s an Identifier.

One solution is to use identifiers bound to atomic descriptions for relation names, as

we did for instance description concepts. Unfortunately, this has its own drawbacks.

It requires more concepts to be defined. It restricts the programmer's choice of

111

— •

—*

identifier names, because name conflicts would occur if local variables had ihe same

names as attribute relation names.

Biographies have only been partially implemented. Also, work needs to be

done on deciding what kinds of history-oriented services should be provided by

default for actors. We need to implement compilation. Some preliminary work has

been done on this, but much more needs to be done about compilation and

optimization before large scale implementations can be written and run in Act2.

Work is needed on a programming environment and user interface to Act2. We are

in need of source-level debugging tools for Act2, which are capable of dealing with

concurrent activity spanning across workers. Interested readers are encouraged to

approach the Message Passing Semantics group with suggestions.

112

-imJadlMii^naaif-**""-*—---* - '- •-•••- •'- • —•-*•' - ''•*••-—*•••-

Appendix A

Glossary

acquaintances

Actl

Act2

The set of actors accessible by an actor. See {section 1.1.1, page
16}.

A computer language for expressing basic actor-based
computations, implemented by Henry Liebennan. See {section
1.3, page 19}.

An extensible actor language which integrates basic mechanisms
from Actl, Omega, and Ether. The Act2 programming language
and interpreter arc the main topics in this document. See
{section 1.7, page 29}.

A virtual computational agent, which is machine-independent
and communicates using message passing semantics. See
{section 1.1.1, page 15}. .

A computer architecture consisting of some number of workers
(processors) interconnected by high-bandwidth links. It is
responsible for storage management and communication
transmission. See {section 1.6, page 26}.

atomic description A concrete actor which represents an abstract concept or
individual, for purposes of knowledge representation as in
Omega. For example, an atomic description with name
automob 11 e can represent the abstract concept of automobile. It
can be used as a concept in instance descriptions such as
(an automobile (with color red)). See {section 1.4, page
21}.

actor

apiary

attribute A part of an instance description, which specializes the
description. For example, (with color red) is an attribute in
the instance description, (an automobile (with color red)).
See {section 1.4, page 22}.

113

•*-... — -

'
•-T-—

attribute kind Part of an attribute which indicates the significance of the
attribute to the instance description. There are different kinds of
attributes, and different axioms can be applied to them. For
example, with is an attribute kind in (with color red).

attribute relation Part of an attribute which indicates the relationship of the
attribute filler to the instance description. For example, color is
an attribute relation in (with color red).

attribute filler

behavior

binder

biography

communication

complaint

Part of an attribute which denotes a description or actor which is
related in some manner to actors described by the instance
description. For example, red is an attribute filler in
(with color red).

A characterization of an actor, denoting what communications it
can accept and how it will process each of them. See {section
1.1.1, page 16}.

An Act2 expression of the form (bind symbol), which is used in
pattern-matching to bind a symbol to the corresponding
component of the object being matched.

A record of the history of an actor. This includes the
communications the actor accepted, and the effects it caused in
processing each of them.

A unit of information flow between actors. A communication is
an actor containing information for another actor. It is
transmitted from one actor to another as part of a computation.
See {section 1.1.1, page 16}.

A type of communication used by convention in an actor
language to indicate that tin" processing of a request has not been
successfully completed, and why. See {section 1.1.2, page 17}.

complaint department
An actor included in a request communication, which will accept
complaints generated during the processing of the request, and
react appropriately, continuing the computation of which the
request was a part. See {section 1.1.2, page 17}.

114

•—:---

11' I' • •

concept

customer

In reference to instance descriptions, the abstract idea or concept
of which actors described by the instance description are
specializations. For example, automobile is the concept of the
instance description, (an automobile (with color red)). See
{section 1.4, page 21}.

An actor included in a request communication, which will accept
replies from the processing of the request, and will continue the
computation of which the request was a part. See {section 1.1.2,
page 17}.

description A representation of some abstract concept, individual, or
collection of individuals with specified properties. See {section
1.4, page 21}, and the definitions of atomic description and
instance description.

dissemination

Ether

event

generalization

The transmission of goals and hypotheses to interested sprites.
See {section 1.5, page 23}.

A reasoning system for concurrent systems, implemented by
William Kornfeld. The reasoning process is modeled after the
problem-solving activities typical of scientific communities. See
{section 1.5, page 23}.

The acceptance of a communication by an actor for processing.
See {section 1.1.2, page 18}.

In a description system such as Omega, a generalization of a
description is another description which describes at least those
individuals described by the first. For example, the statement
that ((an automobile) 1s (a moving-object)) establishes
(a moving-object) as a generalization of (an automobile). It
automatically relates the knowledge we have about
(a moving-object), such as how it obeys physical laws of
motion, to (an automobile). See {section 1.4, page 22}.

goal In Ether reasoning, a characterization of some problem to be
solved, or some statement to be proven. See {section 1.5, page
23}.

115

.,.....««..

...,-, -—^_.

i^^^-o ""••••" -

history A record of the events in an actors "life". See biography.

hypothesis In Ether reasoning, a characterization of something which is
thought to be true. See {section 1.5, page 23}.

inheritance In reference to Omega knowledge representation, if an
inheritance relation is asserted between one description and
another, then all individuals described by the first are also
described by the second. Any information collected about the
second also applies to the first. See {section 1.4, page 22}.

instance description
A representation of some set of related abstract individuals.
Sometimes used to represent an arbitrary member ofthat set.
For example, the following might be used to represent the set of
red automobiles or any arbitrary red automobile, depending on
the context of usage: (an automobile (with color red)). See
{section 1.4, page 21}.

matching

message

Omega

pattern

See pattern matching.

Part of a communication. The message is that piece of
information intended to be interpreted by the target of the
communication. See {section 1.1.2, page 17}.

A description system for knowledge representation and
manipulation, implemented by Gerald Barber. It allows
assertions to be made about the relationships between abstract
concepts and individuals, and is able to make its own deductions
based on these inheritance relationships. See {section 1.4, page
21}.

See pattern matching.

pattern matching The process of determining whether some pattern is a
generalization of some object. The pattern and object of the
match may be a description or any other actor.

Planner An early programming language for Artificial Intelligence
applications. It provided mechanisms for reasoning, but relied

L
116

r mm
~—

Plasma

Prelude

reply

request

response

script

OH back-tracking to simulate non-determinism.

llie first programming language based on the actor model of
computation. See {section 1.2, page 19}.

An actor language which will have the full functionality of Actl,
Omega, and Ether. It will be implemented as a set of extensions
of Act2. See {section 1.7, page 28}.

A type of communication, used by convention as a response to a
request which has been successfully completed. See {section
1.1.2, page 17}.

A type of communication used by convention to initiate a form of
communication resembling two-way communication. An actor
sends a request communication to some target, expecting some
response as part of the processing. The request contains a
customer and complaint department which will accept the
response and continue with the rest of the computation. See
{section 1.1.2, page 17}.

A reply sent to a customer, or complaint sent to a complaint
department, as part of the processing of a request. See {section
1.1.2, page 17}.

That portion of an actor which dictates what communications the
actor can accept and how it will process each. See {section 1.1.1,
page 16}.

serialized actor An actor which can replace itself with another actor, as part of the
processing of some communication. See {section 1.1.1, page 16}.

serializer A serialized actor. See {section 1.1.1, page 16}.

specialization A description is a specialization of another description if the set
of abstract or concrete individuals it describes is a strict subset of
that described by the other description. For example, the
statement that ((an automobile) 1s (a moving-object))
establishes (an automobile) as a specialization of
(a moving-object). It automatically relates the knowledge we

117

• .~.-..-—•-•

have about (a moving-object), such as how il obeys physical
laws of motion, to (an automobile). See {section 1.4, page 22}.

sponsor A resource management agent. The apiary charges for each
event processed. Every communication transmitted contains a
sponsor, to pay for the processing of the event. See {section 1.5,
page 24}.

sprite An independent problem-solving agent, which actively applies a
specific problem-solving rule. Each sprite has a trigger pattern
characterizing which goals or hypotheses which activate it, and a
body indicating what to do if such an announcement is
disseminated. See {section 1.5, page 23}.

target In reference to transmission of communications, the target is the
intended recipient of a communication. See {section 1.1.2, page
17}.

transactions 1. Common patterns of communication, such as request/reply
and request/complaint.
2. A computation. All activity caused by the sending of a request.
See {section 1.1.2, page 17}.

unserialized actor An actor which cannot replace itself with another, in response to
some communication. See {section 1.1.1, page 16}.

worker An independent processor in an apiary architecture. See {section
1.6, page 26}.

118

•*—*-" •
•• •' • - •--

••- - —

P" """"" • "•mm

•*—-———

Appendix B

A Sample Session with Act2

A person interacts with Act2 by conversing with an Act2 listen loop. When

the listener prompts for input, the person simply types in any Act? expression. This

expression is evaluated by the listener, which is associated with an environment

serving as a context for resolving names. The listener displays the response it

received from the evaluation, then prompts for more input

In this appendix, we will present a "sample session" of conversational

interaction with an Act2 listener. This will be slanted in order to gradually

introduce the constructs in the language. Each iteration will have user input labeled

request and Act2's response labeled reply or complaint. Brief commentary may also

be interspersed with iterations, to reveal their significance or explain what's being

input.

Like most languages, Act2 has numbers. Primitive numbers can be denoted

directly, by a sequence of digits, optionally preceded by a minus (-) sign.

Request:
10

Reply:
10

Arithmetic operations are defined for numbers, and convenient expressions

are defined for denoting them. Although both prefix notation, as in (+ 10 7), and

infix notation, as in (10 + 7), may be used, prefix notation is recommended.

Request:
(+ 10 7)

Reply:
17

119

-_^«,. ,M

One can also directly ask the numbers to perform the operations. In fact, thai

is exactly what expressions like (+ 10 7) do when evaluated.

Request:
(ask 10 (a + (with operand 7)))

Reply:
17

The identifier, true, is bound to a logical value representing truth.

Request:
true

Reply:
T

The identifier, false, is bound to a logical value representing falsity.

Request:
false

Reply:
NIL

Symbols can be denoted by quoting them to prevent their evaluation.

Capitalization may be used arbitrarily, because case is ignored when distinguishing

symbols.

Request:
*x

Reply:
X

Act2 has sequences for representing ordered collections of objects. When an

expression denoting a sequence is evaluated, each of the expressions denoting an

eiement of the sequence is evaluated. By default, sequences are represented directly

as lists.

Request:
[4 true false (+ 1 2)]
ffy: Rep,
(4 T NIL 3)

A simple expression exists for binding a symbol to some value in the listener's

120

 " ••' r>t,*j6m*maaiimHmü*Hlt*mimimk*mä M

" '• " -• ^mm

lop level environment. Only the expression denoting the value is evaluated.

Request:
(defname x (+ 7 5))

Reply:
X

Names previously bound in the listener's environment may be mentioned in

expressions for the listener to evaluate.

Request:

Reply,
17

(+ 6 x)

The evaluation of some expressions may result in a complaint instead of a

reply. The expression below attempts to divide by zero, which is not mathematically

defined.

Request:
(// 6 0)

Complaint:
(a d1v1s1on-by-zaro)

The let construct provides a convenient means for binding symbols to actors,

for use within a body of commands. It is quite flexible, allowing an arbitrary

pattern-match instead of just a trivial symbol binding.

Request:
(let ((HEX match 3)

((a foo (with bar =y)) match (a foo (with bar 4))))
do (raply (+ x y)))

Reply:
7

The defconccpt expression below binds a new atomic description with name

add5 to the symbol, add6.

Request:
(defconcept add6)

Reply:
AD06

121

i— -t.

r ••'• ,mm-^••PWi^——<«*•««••••

Now, we can define a new abstraction which adds 6 to a number we provide.

Request:
(define (new add5 (with number sn)) (+ 5 n))

Reply:
ADD6

We can instantiate our new abstraction with a new expression.

Request:
(new add6 (with number 2))

Reply:
7

An attempt to instantiate our abstraction with a form of the new expression

which does not match will result in a complaint

Request:
(new add5 (with bar 'x))

Complaint:
(a failure ...)

We can also define a bank account abstraction, as in {section 2.3, page 34}.

We will assume all appropriate atomic descriptions already exist

Request:
(define (new account

(with balance =b))
(create
(1s-request (a balance) do (reply (a balance)))
(1s-request (a deposit (with amount = a)) do

(become (new account (with balance (+ b a))))
(reply (a deposit-receipt (with amount a))))

(1s-request (a withdrawal (with amount sa)) do
(let ((=new-ba1ance match (- b a))) do

(1f (> new-balance 0)
(then do

(become (new account (with balance new-balance)))
(reply (a withdrawal-receipt (with amount a))))

(else do
(complain (an overdraft))))))))

Reply:
account

Now, we can create a new account, binding it to a symbol in the top level

122

*mmämil**^^ä--LAXn^LM^*.~m.fimi , f _t ,_, ,. ', __ ,

environment For later reference.

Request:
(defname my-account (new account (with balance 30)))

Reply:
MY-ACCOUNT

We can deposit some money in our account

Request:
(ask my-account (a deposit (with amount 5)))

Reply:
(a deposit-receipt (with amount 6))

We can also withdraw money from our account

Request:
(ask my-account (a withdrawal (with amount 10)))

Reply:
(a withdrawal-receipt (with amount 10))

If we try to withdraw too much money, our account will complain.

Request:
(ask my-account (a withdrawal (with amount 100)))

Complaint:
(an overdraft)

Finally, let's find out what our current balance is.

Request:

Reply,
26

(ask my-account (a balance))

123

•— - •• ••

—•"^^ ——

Appendix C

Act2 Language Description

This section informally presents the meaning of Act2 constructs in English.

Precision is sacrificed for readability. As a result, parts of this informal description

may seem ambiguous to some readers, who are invited to refer to the meta-circular

description {section D, page 163} for clarification.

C.1 The Actor Model of Computation

An actor is a fundamental computational entity in the actor model of

computation. Computations proceed as actors send communications to other actors,

who process them. Each actor has a script, which indicates what communications

the actor will accept and how the actor will process each of them. It also has a set of

acquaintances, which are the other actors it can communicate with. Notice that each

actor contains both data and procedural information (its acquaintances and script).

For example, a bank-account actor might have an acquaintance which represents the

current balance, and a script which determines how it responds to communications

such as deposit or withdrawal requests. This information is encapsulated by the

actor, and is therefore hidden from all other actors. The only other actors that an

actor can communicate with are its acquaintances and the acquaintances of the

incoming communication. Because of this, an actor is not tied down to any

hardware processor — it can migrate from machine to machine.

When they receive communications, actors can do simple recognition of the

incoming communication, make simple decisions, create new actors, transmit

124

"-"^-"- • • •-• I--
• ^- — —

•I ""•"'^••«•i

communications to actors, and change their own behavior. Any actor-based

computation is composed from these primitive operations. It is possible to construct

sophisticated applications from suitable compositions of actors. Because the actions

of actors themselves are inherently concurrent, these applications will also be highly

concurrent, with no special effort.

There are very important differences between actors whose scripts do not

allow for a change in behavior and actors which may change. An actor which can

change its behavior can only process one communication at a time, because the

processing of one communication might affect the processing of communications

accepted later. Because it must accept communications serially, such an actor is

called a serialized actor, or serializer. It restricts parallelism by requiring

synchronization.

Actors which cannot change their behavior are called unserializedactors.

They can process arbitrarily many communications at a time, requiring no

synchronization whatsoever. Moreover, they can be copied indiscriminately when

convenient. These actors provide the full potential for parallelism inherent in the

actor model.

Communications and the messages within them are also actors. There are

three kinds of communications, corresponding to a model of interaction among

actors which is analogous to interaction among humans working together on some

problem. An actor may send a request to another actor, which is often expected to

reply upon completion of the requested activity or to complain if some problem

arises. Rather than waiting for a response to a request, which would limit

parallelism, an actor spawns new actors to accept the response and pick up with the

computation where it left off. These actors are included in addition to the message

in the request, so the actor can begin processing the next communication

125

~^~ 11MH la^diiliiii —.«_—.-._

1 'I •

immediately after sending the request. There are two sueh aetors in each request, a

customer for processing replies, and a complaini-dcpartmem for processing

complaints.

Computation is event-driven. An actor is dormant when not processing a

communication. Upon receipt of a communication, it is awakened and can proceed

with the computation. This minimizes the resource usage by actors not doing useful

work, and makes resource management easier in general.

C.2 A Glimpse of Act2

Actor languages provide a higher-level interface to the basic computational

abilities of actors. They can make use of the inherent concurrency of actors to

provide concurrency in a natural way at the language level. Act2 is an actor

language. A user interacts with it using a listen-loop, one iteration of which reads,

parses, and evaluates an Act2 expression, then prints its result.

Act2 has some pre-defined actors, like numbers and symbols. Some standard

names are provided, such as true and false. The symbols are bound to appropriate

actors in the standard Act2 environment. Constructors of information structure,

such as sequences and instance descriptions, are also pre-defined.

Act2 provides a convenient notation for expressing actor-based computation.

For example, the sending of a request and subsequent reception of a response is

naturally denoted as an expression in the language. The customer and complaint-

department are created by Act2 from information available from the context of the

expression.

A convenient form of pattern-matching is provided. It is useful for

126

am , »mmtmtm^^mtm^mt ' nm iifi K m4**m*itMto*liätimli*li

r 1 ' " • I '"- m..

recognizing communications and their contents and binding names to their parts for

"later reference. This pattern-matching unifies the ideas of comparing descriptions

and of type-checking.

The evaluation of an expression should always be thought of as sending a

request to the expression asking it to evaluate itself in the environment supplied in

the request's message. For example, if the expression (+3 x) is asked to evaluate

itself in an environment in which the symbol x is bound to 4, the expression will first

ask its sub-expressions to evaluate themselves in the supplied environment. They

reply with the values 3 and 4, then the expression adds them together and replies

with the value 7. In general, if an Act2 construct containing an expression is

evaluated and the evaluation of the expression complains, the evaluation of the

construct will respond with that complaint, unless the construct explicitly handles

that complaint. If there are more than one such complaining sub-expressions, the

first to be noticed will be relayed, and the rest will be ignored.

C.3 Pre-Defined Actors

Act2 provides pre-defined actors which can be used in computations. These

pre-defined actors correspond to those provided in most other languages: logical

truth values, numeric values, symbols, and sequences. All of these are actors,

behaving like actors in the computational model. They accept communications,

perform some computation as a result, then transmit communications in response.

All pre-defined actors are unserialized.

127

i «IM «tä, Mwa^i^^iifc^m^ , . • .-

" ""» •• •••

t.3.1 Symbols

A symbol is a name typically used as a keyword or identifier in the Act2

language. In the printed representation of the language, a symbol is denoted by one

or more adjacent alpha-numeric characters. For example, reply-to, tl, and

message are symbols. Symbols are bound to actors in environments. When asked

to evaluate itself as an expression in some environment, a symbol will look itself up

in the environment Symbols also respond to a number of other requests, such as

requests to parse, print, or match. Because the evaluation of a symbol is an attempt

to get at an actor to which the symbol is bound, denoting the symbol itself is done

by using a quote expression: (quote foo) or 'foo.

C.3.2 Numbers

Numbers are actors which behave like numeric mathematical entities. They

accept communications such as: a request to add (subtract, multiply, divide,...)

themselves with some other number, or a request to compare themselves with some

other number (for equality, or numeric ordering).

('.3.3 Boolean Values

Act2 provides values which behave like logical truth or falsity values. These

accept messages such as a request asking them to perform one computation if they

represent truth or another if they represent falsity. The identifiers true and false

are bound to actors with the appropriate behavior.

128

mm* •—>,.

r
C.3.4 Sequences

Sequences represent an unserialized, ordered collection of actors. They

roughly correspond in behavior to Lisp lists. The concrete realization ofthat

behavior, however, may have many forms. A sequence is created by an expression

such as (sequence expressions), where each expression is a sequence element. Act2

provides a syntactic sugaring for this type of expression: [expressions]. For

example, an empty sequence can be denoted [], and a sequence with the elements

3, true, and-3.14 can be denoted [3 true -3.14]. An empty sequence can also

be created by the expression (new empty-sequence), new expressions will be

discussed below.

A non-empty sequence can also be thought of as a recursive data structure,

composed of a first element and a sequence containing the rest of the elements.

Sequences can be created with an expression of the form,

(new sequence (with first 3) (with rest ...)).

C.3.5 Convenient Expression of Basic Operations

Act2 provides convenient expressions for increasing the readability of certain

requests such as those handled by pre-defined actors. For example, the expression

(+ 3 4) is a convenient expression of (ask 3 (a + (with operand 4))).

Other such conveniences include: (- 3 2), numeric subtraction; (• 3 2),

numeric multiplication; (+ 3 2), numeric division; (A true false), logical

conjunction; (V true false), logical disjunction; (-> true), logical negation;

(- x y), equality of arbitrary actors; (< x y),less-than partial ordering; (> x y),

greater-than partial ordering, etc.

129

MMhuWi i^aiau •», •»-* -

r wmmm

C.4 Descriptions

When actors perform computations, they cooperate with each other by

transmitting communications among themselves. These communications contain

messages, which can be arbitrary actors. When an actor receives a communication,

it must be able to recognize the communication and the message therein, so it can

react to it appropriately, using any information it contains.

Atomic and instance descriptions were developed in [Hewitt, Attardi, Simi 80]

for description and reasoning. These descriptions provided a convenient form of

expressing and recognizing arbitrary information. Act2 makes use of descriptions

for several important and fundamental purposes. Because descriptions can contain

arbitrary information in a very convenient way, they are often used as messages in

communications, such as (a deposit (with amount 30)). They are also used to

describe actors, in a way which corresponds roughly to data types in existing

languages, such as (a bank-account (with balance 600)). Instance descriptions

are often used as patterns for recognizing communications, messages, and actors in

general, such as (a deposit (with amount =a)). Patterns and pattern matching

will be described in more detail below.

(.4.1 Atomic Descriptions

Atomic descriptions are significant in our descriptions as representations of

abstract concepts, such as the concept of bank-account and of deposit. They have

other uses in Act2, some of which will be described below. Atomic descriptions are

often referenced in Act2 expressions representing instance descriptions by a symbol

bound to an atomic description. Often, the atomic description has the same name as

the symbol used to denote it.

The most convenient way to create new atomic descriptions is with an

130

" •'"*••*" - ' - -ir,T^mttmMmäaUtLk , • ,; -"iiitoia^^aii ii HIIMI- —• —-• IJ

r
expression of the Tonn (new concept (with name *foo)). This creates an atomic

description which is distinct from all other atomic descriptions, even from others

having the same name. One of the acquaintances of an atomic description (which is

hidden by the concept interface) is a discriminator which distinguishes it from all

oi.iers. This discriminator is used in the comparison and matching of atomic

descriptions. Two atomic descriptions match if they have the same discriminator.

(.4.2 Instance Descriptions

Instance descriptions abstractly represent a set of instances of some concept

For example, (a bank-account) represents the notion of instances of the concept of

bank-account, and in so doing represents any bank-account which may exist.

Instance descriptions can be specialized by adding further restrictions to what

instances they can represent. These restrictions are in the form of attributes. For

example, (a bank-account (with balance 600)) represents any bank account

having a balance of 500, is significantly more specialized than the description

(a bank-account).

Instance descriptions can be used in Act2 for their descriptive capabilities.

For example, supposing we had a serialized actor representing a bank account which

happens to contain i balance of 500. We could describe this actor as

(a bank-account) or as(a bank-account (with balance 500)) as long as those

descriptions remain true. Unserialized actors, because they cannot alter their

behavior, are even more amenable to description.

Instance descriptions can be used in Act2 for their information-containi 3

capacity. For example, supposing we had a serialized actor representing a bank

account with balance 500 dollars and wanted to deposit an additional 30. The most

131

•—""--• •••--• -'i um
---—f^.^- Lj

 I I

convenient way lo express our desire is to send the bank account a message such as

(a deposit (with amount 30)).

Instance descriptions can be used in Act2 for their recognition or pattern-

matching capabilities. For example, our bank account might be capable of receiving

requests to deposit some amount, to withdraw some amount, or to reveal the current

balance. The account needs some way to recognize an incoming request, and what it

is asking for. It must also be able to extract any additional information from the

message, such as the amount to deposit or withdraw. It might use an instance

description as a pattern, makirg use of a few special features for information

extraction.

The pattern could look like (a deposit (with amount =a)). Act2 defines

matching such that this pattern would successfully match all specializations of the

pattern. This will be described in more detail below. For now, we will simply look

at what patterns might look like. The expression, =a, is a convenient way of writing

the expression (bind a). If asked to match some actor in an environment E, this

expression will bind the identifier a to the actor and reply, indicating a successful

match, as well as the extended environment. The pattern could impose an

additional restriction that the actor be a number:

(a deposit (with amount (=a wh1ch-1s (a number)))). The pattern could

also impose the restriction that the amount be a positive number, as in

(a deposit (with amount (=a wh1ch-1s (a positive-number)))) or
(a deposit

(with amount
(=a wh1ch-1s

((a number) such-that (> a 0)))))

In general, Act2 expressions representing instance descriptions look like:

132

~ >»_. -._.

' ""*

(a concept
(attribute- k it id I at t ributc- relatU ml alt r Untie-fillerI)
{attribute-kind2 attribute-relation2 attribute-Jiller2)

The keyword an may be used instead of the keyword a as an aid to

pronunciation and readability. When asked to evaluate itself in some environment

E, an instance description expression will evaluate its concept expression and its

attribute-fillers. It will then create an instance description from the resulting

information in addition to its attribute kind and relation information.

Each attribute has a keyword which indicates what kind of an attribute it is.

This affects the applicability of various axioms for deduction involving instance

descriptions with attributes in Prelude. For the purposes of Act2, which does no

sophisticated deduction, the keyword with is sufficient for all uses.

Each attribute has a relation name, which indicates the significance of the

attribute's filler. By default, Act2 does not evaluate attribute relations, and a raw

symbol is sufficient there. This can be thought of as analogous to field names of

records in many languages.

Each attribute also has a filler, which contains information of interest. The

filler may be a description, or may be an arbitrary actor.

C.4.3 Pattern Matching

Pattern-matching is the fundamental recognition mechanism in Act2. It is

used for recognizing a communication and its message, and for binding symbols to

some of the parts for later use. This recognition is performed by communication

among the actors involved. Typically, an object is available for matching, such as a

communication, its message, or some acquaintance. Tit ere is also at least one

133

^ I

pattern presented for recognition of the object. Associated with a pattern is some

form of processing involving the matched object. For each attempt at a match, we

have a pattern for matching, an object to match, and a small environment for

holding symbol/actor bindings made during the match. Pattern matching is often a

recursive process, first matching the pattern's top level, then matching each of the

pattern's fillers.

A typical object to be matched is an instance description or an arbitrary actor.

For example, the instance description (a bank-account (with balance 6)) could

be included as a message in a communication, as could any actor, such as a serialized

bank-account actor.

A typical pattern is an instance description, which may match another instance

description if they are similar, or which may match an arbitrary actor if it is a

suitable description ofthat actor. For example, the following could be used as

patterns:
(a bank-account)
(a bank-account (with balance =b))
(=x whlch-1s (a bank-account))

The pattern-matching performed by Act2 itself does not involve sophisticated

deduction based upon knowledge of inheritance relationships among instance

descriptions, although constructs providing such matching could be embedded in

the language.

Pattern-matching is a negotiation process between patterns and objects, and

does not violate the principle of absolute information containment by actors. A

pattern-match between a pattern P and an object O is initiated by an Act2 construct

by sending P a request with message:

134

— •*•• ^~"-iüiaiiMaHiiMi^ntti nr • - —"• •— -- - -

—m

(a match
(with object 0)
(with bindings (new empty-layer)))

After some negotiation among the pattern, the object, and their acquaintances,

we expect a reply of the form (a successful-match (with bindings ...))or

(a falled-match).

The behavior of a pattern-match depends upon the way actors used as patterns

respond to match requests. A few expressions are provided by Act2 which evaluate

into actors providing useful functionality for matching. These are often used in

conjunction with instance descriptions to construct patterns.

The bind expression has the form (bind symbol), and can be written =symbol.

It does not evaluate its argument. When asked to match some object O, where the

set of bindings B has been established, the most common result is for it to simply

reply with a successful match, with an extension of B in which the symbol is bound

to O. It actually checks first whether or not the symbol is already bound in B. If not,

it simply proceeds as above. If so, the match succeeds (with bindings B) only if the

actor bound to the symbol matches the actor, 0.

The which-is expression has the form (which-1s pattern! pattern!) or

(pattern! which-Is paticm2). In order for it to result in a successful match, both

pattern! and pattern2 must match successfully. A typical use of this expression is to

add some restriction to what can be matched by a bind expression. For example:

(=x wh1ch-1s (a natural-number)).

A similar expression adds a restriction in the form of a predicate which must

be satisfied in order for the match to succeed. A sucht hat expression has the form

(such-that pattern predicate) or (pattern such-that predicate). When asked to

match some object with established bindings B, it succeeds only if pattern succeeds

135

•aiL. mm* Mahl. .« -..^

'•-"- —

"•'•—-•-

with some bindings B\ and predicate yields truth when evaluated in the prevailing

environment extended with B\ This might be used in a situation such as:

(=x such-that (< x 6)).

Atomic descriptions have a name which is meaningful to humans, and a

discriminator, which is actually used to identify them. An atomic description will

only match another atomic description which has the same discriminator. Matching

atomic descriptions always have the same name. Independently-created atomic

descriptions will not match, even if they have the same name, because their

discriminators will differ.

An instance description performs a slightly more sophisticated match. For

example, the pattern (a bank-account) will match both a comparable instance

description such as (a bank-account (with balance 600)) as well as a serialized

actor which is described by an instance description such as (a bank-account).

Whereas this would naturally occur if Act2 did matching involving deduction, it

must be done explicitly by Act2 with an appropriate protocol.

An instance description's simple protocol for matching another instance

description is: the concepts must match; the relations present in the pattern must be

present in the object; and the fillers in attributes with the same relations must

match.

When the object is not a description, the pattern will match the description of

the object, rather than the raw object itself. Every actor has a description, which is

associated with it at its creation time. Act2's simple protocol for matching two

instance descriptions is Act2 has a predicate which can be used to distinguish

whether an object matched is an instance description or not. It has the form

(individual actor), and returns truth when applied to actors which are not

136

«MM UM i

descriptions.

Any other actors are provided with extra communication handlers by Act2 if

needed, to handle communications such as a request to match. By default, arbitrary

actors match if they are "the same actor". Sameness for serialized actors means that

the actors must really be the same actor, and must occupy the same storage. Because

unserialized actors can be replicated arbitrarily, they are the same if they have the

same behavior and the same acquaintances. That is, we cannot tell the difference

between copies of an unserialized actor, because their behaviors will ne\ar become

different.

C.5 Top-Level Expressions

A user's interface to Act2 is a listen loop. At all times, there is a prevailing

environment associated with the listen loop. It is with respect to this environment

that expressions entered by the user are evaluated.

.

The user's input is read in as list structure, symbols, and/or numbers. What is

read in is asked to parse itself. The resulting abstract syntax is asked to evaluate

itself, with respect to the prevailing environment. The response is asked to print

itself for the user, then the next iteration begins, prompting the user for more input.

Should any unhandled complaints be generated at any point in a listen-loop

iteration, the loop itself will handle the exception (by entering a debugger or by

asking it to print itself), then will proceed with the next iteration.

The user is able to evaluate arbitrary Act2 expressions simply by typing them

in to the listen loop. Act2 provides convenient expressions for: extending the

prevailing environment by associating a symbol with an actor denoted by some Act2

expression (demame); introducing an abstraction which encapsulates arbitrarily

137

JJ i ^ i

•••'•«•« ' II..

complex information (define); and defining syntactic extensions to the language by

extending the environments used in parsing Act2 code (defexpression and

defcommand).

C.5.1 DEFNAME Expression

It is convenient for someone conversing with a listen-loop to remember the

results of expression evaluations for later reference. A convenient expression is

provided which binds a symbol to an actor in the prevailing environment For

example, (def name too (+ 3 4)), when asked to evaluate itself in some

environment, E, would ask (+ 3 4) to evaluate itself as an expression in

environment E, would accept the reply (7) then ask E

(a grow (with symbol 'foo) (with value 7)).

The expression, (def name expl exp2), when asked

(an expresslon-eval (with environment E)), will behave as follows. If all goes

well, the environment E grows to associate the symbol expl with the value (V) of the

expression exp2 in E, and the defnamc replies V.]fexpl is not a symbol, the

defname will complain. If exp2 complains, the defname will relay the complaint.

C.5.2 DF.FCONCEPT Expression

Atomic descriptions are a very important part of Act2. Among other things,

they serve as concepts for instance descriptions. For flexibility, the concept part of

an expression such as (a foo) denoting an instance description is evaluated. For

readability, it is convenient to express simple concepts simply.

Both constraints are satisfied if the symbol foo is bound to a suitable atomic

description. The defconccpt expression is a convenient way of creating an atomic

138

-i. -.—L "*»' ' » i^tiaiMM^JiHiuit^^- . .,.— _..-'...-^., „,_

immrn

description and establishing such a binding at the same lime. For example,

(def concept foo) can be thought of as

(defname foo (new concept (with name 'foo))), where

(new concept (with name 'foo)) creates a new atomic description which among

other things has the name foo. For more details, see {section D.5, page 170} in the

meta-circular description of Act2.

C.5.3 DEFINE and NEW Expressions

Act2 has a single abstraction mechanism which is suitable for encapsulating

the information content of arbitrarily complex expressions. Only one such

mechanism is necessary, because the actor model of computation can express

procedural, data, and control abstraction directly in terms of actors. The define

expression has the form (define expression-template expression).

Intimately related to define expressions are new expressions. A define declares

the meaning of a set of related new expressions. For example,

(define (new double (with number =n)) (• 2 n)) declares the meanings of a

class of expressions including (new double (with number 3)), which means

(* 2 3),and(new double (with number -3.14)), which means (• 2 -3.14).

Any expressions with concept double hut not of the form

(new ... (with number ...)) are undefined, and will complain when evaluated.

For more details, see {section D.4, page 168}.

new expressions look very much like instance descriptions', having a concept

and optional attributes, but are imperative rather than descriptive. For example,

(new bank-account (with balance 300)) may yield a newly-created bank

account with the stated balance, whereas (a bank-account (with balance 300))

would simply describe such an account. Ilie template in a define is typically a new

139

i • ip n in ! mm ••--»-•»•-»•»••"•»••i

expression whose attribute fillers contain binders. For more details, see {section

D.4, page 169}.

A define expression of the form (define expl exp2) will behave as follows:

The abstract syntax expl is asked to install itself, given the prevailing environment

and the abstract syntax exp2. The define expression will relay any unhandled

complaints generated by this process, else will acknowledge completion, expl

should be a new expression.

A later define expression declaring a new expression with the same concept

will shadow the older declaration; only the newest will be used. All concepts in

well-formed and meaningful new expressions evaluate to atomic descriptions.

C.6 Simple Expressions

C.6.1 ASK Expression

In the actor model, two-way communication is achieved by sending a request

containing some message as well as a customer to which the target of the request

should reply. The ask expression is a convenient way of expressing just that {section

D.2, page 165}. In an ask expression, a target for the request and the message in the

request are explicitly denoted, but the customer is constructed for the user from the

context in which the ask expression occurs. For example,

(ask my-bank-account (a balance)) is an expression whose value will be 300 if

the symbol my-bank-account is bound to an actor which responds to a request with

message (a balance) with a reply with message 300.

A useful way of thinking about the ask expression is: when asked to evaluate

itself as an expression in environment E in a request with customer C, it asks its

140

' •" I

target and its message to evaluate themselves in E. It then sends to the target value a

request with the message value and the customer C. Therefore, the response from

the evaluation of an ask expression is the response from the ask's target when sent

the ask's message in a request.

C.6.2 QUOTE Expression

Unless explicitly stated otherwise, Act2 expressions typed in by the user are

both parsed and evaluated.. This is the case for most contexts in which expressions

are expected. Sometimes, it is desirable to be able to denote some unparsed symbol

or list structure in a context in which expressions are normally evaluated. The quote

expression accepts one argument, which it neither parses nor evaluates {section D.2,

page 165}. The result of a quote expression is typically either a symbol or some list

structure. For example, an evaluation of the expression (quote foo) yields the

symbol f oo. An evaluation of the expression (quote (a 6 (x))) yields a list

containing three elements: the symbol a, the number 6, and a list with one element,

the symbol x.

A prefix operator (•), known as "quote", "single-quote", or "accent-mark", is

provided for convenience. The expression ' exp is syntactically equivalent to the

expression (quote exp). Thus, the examples above could have been written 'foo

and '(a 6 (x)).

C.6.3 PARSK-F.XFRFSSION and PARSE-COMMAND Expressions

The parse-expression expression parses its argument as an expression,

producing an abstract syntax actor. It is included only for convenience, because its

effect can be reproduced by sending a parse request to a quoted expression. An

expression such as (parse-expression '(ask foo (a decrement))) evaluates to

141

" ' 'Tinirnmiii in " —* * -...-*• u

an abstract syntax actor representing the expression (ask foo (a decrement)),

which might later be asked to evaluate itself in some environment A similar

expression, parse-command, exists for parsing surface syntax into abstract syntax

representing a command.

C.7 Creating Actors

The create expression provides a mechanism for creating actors having a

specific behavior. It contains communication handlers describing what messages the

actor will accept and how the actor will react to each of them. Each communication

handler has two parts. A matching part contains an instance-description pattern,

which characterizes the communications the handler will accept and extracts

information from communications it matches. A body part contains a set of

commands to be evaluated when a communication is accepted by the handler. Act2

commands will be described below.

When a create expression is asked to evaluate itself in some environment, it

constructs a new actor from that environment and the communication handlers

{section D.7, page 172}. It is useful to think of this actor as if it retains the creation

environment and the abstract syntax for the handlers. At times, the evaluation

message may contain extra information, such as a description of the actor. This

information is incorporated in the newly-created actor, as will be mentioned in the

discussion of the define and new expressions. The newly-created actor is capable of

accepting and processing communications, as dictated by the communication

handlers.

The most common communication handler is for accepting requests, and has

the form (1$-request message-pattern do commands). If the incoming

142

ttfc ^üiiMAMiifc^ittiiMh»!11 •!.

'»-MW ' •-•^•••••P!

communication is a request, and its message is an actor which matches the

message-pattern, then the communication handler is capable of accepting the

communication. There are similar forms of communication handlers for accepting

replies, (1s-rep1y message-pattern do commonds), and complaints,

(1s-complalnt message-pattern do commands). There is also a more general form

of communication handler, which allows explicit extraction of more or less

information from the communication. It contains a pattern for matching the whole

communication, rather than just its message:

(is-commun1cat1on communication-pattern do commands).

A create expression itself his the following form, where an otherwise clause

can be omitted at any point:
(create
communication-handlers
(otherwise communication-handlers

(otherwlse communication-handlers
(otherwise ...))))

Upon receipt of a communication, all handlers in the first set of handlers are

given a chance to match the incoming communication. These attempts at matching

are performed concurrently. If any of the handlers successfully matches the

communication, one is chosen (the first one noticed, temporally) to handle the

message. If all attempts at matching by these handlers fail, some handlers supplied

by Act2 will be tried by default. These handle such communications as requests to

print or requests to match some actor. If these fail, and mere is an otherwise clause,

the next set of handlers is tried. This process continues until a handler is found that

can accept the communication, or until there are no more handlers to try. In the

latter case, the actor rejects the communication.

Rejecting a communication happens as follows. If the communication is a

request, the actor complains to the complaint-department designated in the request;

143

"^^^^Mtefceufc-i^r • •-^-

r "••"" i •—

otherwise, the actor complains to a standard complaint-department reserved for

such purposes by the implementor.

A communication handler chosen to process the communication evaluates the

commands in its body, using the actor's creation environment, extended with any

bindings established during the match {section D.10.6, page 195}. The commands

in its body are evaluated concurrently. Some important pieces of information, such

as a customer, complaint department, or sponsor, are often left un-named or

completely unmentioned in communication handlers. Act2 has context-sensitive

commands which can make use of this information.

In principle, the create operation is sufficient for creating actors. We have two

kinds of actors: serialized and unserialized. Serialized actors are able to change their

behavior, and are therefore not permitted to handle more than one communication

concurrently. Unserialized actors can not only handle many communications

concurrently, but can also be replicated indiscriminately. The distinction between

them is important not only for performance, but for recursive computations . By

default, create creates a serialized actor, to be on the safe side, because an

interpreter does not conveniently know whether or not one of the handlers with

cause a change in behavior. A compiler, on the other hand, could create

unserialized actors from a create expression when it notices that the actor's behavior

cannot change.

Because a serialized actor can only process one communication at a time, it cannot send itself
communications as part of the processing of another communication. This would freeze the actor in
a deadlock. For example, consider our bank account example from {section 2.3. page 34}. Suppose
we had implemented die serialized actor to respond to a deposit request by sending itself a
withdrawal request with the negated amount. Because the serialized actor can only process one
communication at a time. The withdraws! request would have simply been enqueued for the actor to
process later. Because it will never get a response from its withdrawal request, me deposit request
will never be satisfied.

144

I
—^ „J. ^—, ^.„, ^-- ,-...•• -.

m*

Act2 provides the create-unserialized expression, which behaves like the create

expression, but always creates unserialized actors. This is an aid to the interpreter,

which does not have enough information conveniently at its disposal to deduce that

Ute actor cannot change. It is an optimization for compilation, saving the work it

would otherwise take to determine that the actor is unserialized. It is also good

documentation for human readers of Act2 code. No attempts in a communication

handler body to change the behavior of one of these actors will be honored, and a

complaint will be generated as soon as this is noticed.

A create-unserializcd expression itself has the following form, where an

otherwise clause can be omitted at any point:
(create-unser1al1zed
communication-handlers
(otherwlse communication-handlers

(otherwl se communication-handlers
(otherwise ...))))

By default, the descriptor which is associated with a newly-created actor

contains no information about the actor's state. For example, if a bank account

abstraction was defined with
(define (new account (with balance =b))

(create ...))

accounts created with expressions of the form (new account (with balance 500))

would be associated with the description (an account), instead of

(an account (with balance BOO)). This helps guarantee the opacity of these

actors, since the balance could not be obtained with simple pattern-matching. The

implementor of an abstraction may make this information available by default by

using other variations of the create expression. The create-visible and

create-*Lible-unscrializcd expressions do exactly this, and have syntax similar to that

of the create and create-unserializcd expressions. In order to make the balance of

these bank accounts available for pattern-matching, the accounts would have been

145

M

defined with define and creale-visible expressions of the form
(define (new account (with balance b))

(create-v1s1ble ...))

C.8 Simple Context-Free Commands

Few of Act2's commands are completely context-free. They are for one-way

transmission of communications, where both the communication and target are fully

specified. These commands can be included in any context where commands can be

put

C.8.1 REPLY-TO Command

The reply-to command specifies a target and a message. When successfully

evaluated, it creates a reply communication containing the message, then transmits

that communication to the target {section D.8, page 174}. For example,

(reply-to customer 3) sends a reply communication with message 3 to the actor

bound to the symbol customer in the evaluation environment.

More specifically, the form of the reply-to command is

(reply-to target message). When asked to evaluate itself as a command in some

environment E, it asks target and message to evaluate themselves as expressions in

environment E. If they both reply, it transmits a reply communication containing

the message value to the target value. If target complains, then the reply-to

command relays the complaint. Otherwise, if message complains, the complaint is

transmitted to the target value.

146

_

——

C.8.2 COMPLAIN-TO Command

The complain-to command specifies a target and a message. When

successfully evaluated, it creates a complaint communication containing the

message, then transmits that communication to the target. For example,

(compla1n-to complaint-department (a failure)) sends a complaint

communication with message (a failure) to the actor bound to the symbol

complaint-department in the evaluation environment

More specifically, the form of the complain-to command is

(compla1n-to target message). When asked to evaluate itself as a command in

some environment E, it asks target and message to evaluate themselves as

expressions in environment E {section D.8, page 174}. If they both reply, it

transmits a complaint communication containing the message value to the target

value. If target complains, then the complain-to command relays the complaint

Otherwise, if message complains, that complaint is transmitted to the target value.

C.8.3 SEND-TO Command

The send-to command is for transmitting an arbitrary communication to some

specified target. It is similar in behavior to the reply-to and complain-to commands,

except that the whole communication to be transmitted is specified, rather than just

the message {section D.8, page 174}. The examples above could have been written

as (send-to target (new reply (with message 3))) and

(send-to target (new complaint (with message (a failure)))).

147

ttmm -"•--• MMM

C.9 Composite Constructs

Concepts such as name-binding, decision, and complaint-handling are useful

both in the context of commands and expressions. Act2 provides such a set of

constructs which can be used both as commands and as expressions.

The evaluation of each of these constructs may involve the evaluation of a

body of commands included in the construct. The commands allowed in the bodies,

and the meaning of a few of those commands, depend upon the context in which the

construct appears. The construct may be used as an expression, as a command in a

communication-handler body, or as a command in an expression body. This will be

explained in more detail below.

C.9.1 LET Construct

The let construct allows the extension of the evaluation environment with

symbol-actor bindings resulting from one or more attempts at matching. The

extended environment is used in the evaluation of the commands in the body of the

let construct {section D.9.3, page 181}.

An example of the use of a let command is:
(let ((=x match 3)

(=y match (+ 2 2))
((a deposit (with amount sz))
match Incoming-message))

do
(reply (+ x y))
(become (new trotz (with balance z))))

In general, the form of let constructs is:

148

«•••^UuttuWuaBaBBBBBB

(let {(paticrnl match expression!)
\pauern2 match expression!)
...)

do
commandl
command.2

When evaluated in some environment E, as either a command or as an

expression, the set of matchers is first processed. The patterns and expressions in

the matchers are evaluated concurrently in the environment E. If any complain, the

let construct relays that complaint. Next, each pattern is asked to match the

corresponding expression. If any of the matches are not successful, the let construct

complains. Otherwise, E is extended with all bindings made during the matchings,

then the commands in the body are evaluated concurrently in the extended

environment. If the evaluation of any of these commands complains, then the let

construct relays the complaint

C.9.2 LABEL Expression

The label expression is introduced for convenience in denoting self-reference.

For example, wrapped around a create expression, it allows an actor to reference

itself with a locally-bound identifier. The label expression has the form
(label symbol expression)

It is essentially equivalent to the expression
(let ((-symbol match (delay expression))) do

(reply symbol))

C.9.3 Interpretation of Command Bodies

As mentioned earlier, there are restrictions on the commands allowed or

required in command bodies, depending upon usage of the construct. If the

construct is used as a command, the commands allowed in the constructs body are

149

.— -<i. «

L

the same as the commands allowed in the context in which the construct exists.

Those commands mean the same as they would if they had occurred in the context

in which the construct exists. This will become clear as we describe composite

constructs in more detail below. For example, in the command body of a

communication handler, we can have a become command, reply or complain

commands, and others. If one of our commands is a let construct, its command

body can contain exactly those commands which were allowed in the context in

which the let construct appeared. That is, it can contain a become command, reply

or complain commands, and more. The meaning of and restrictions on the

commands in its command body are the same as if those commands had appeared

instead of the let construct

If the construct is used as an expression, there are different restrictions on the

commands which can appear in its command body, and reply and complain

commands have a different and special meaning. The evaluation of the construct

must include the evaluation of a single command which denotes the value of the

expression with a reply command, or which generates a complaint with a complain

command. These commands will be described below.

C.9.4 ONE-OF Construct

The basic decision-making construct in Act2 is the one-of construct. This has

the form, where the otherwise clause may be omitted at any stage:
(one-of
(If expression do commands)
• • •
(otherwise (1f expression do commands)

4 • •

(otherwise ...)))

When asked to evaluate itself, the construct concurrently evaluates the

150

*«

J ,
MMhMÜkMiMHi«. ---

• '•' •—*———->

expressions in its first set of arms {section D.9.2, page 179}. Of those returning an

actor behaving like the truth value true, one is chosen, and the body of commands

it guards is evaluated. If any of the expression evaluations complains, the construct

complains. If any of the expressions yields an actor which does not behave like a

truth value, the construct complains. If all expressions yield an actor behaving like

the truth value false: if there is an otherwise clause with another set of guards,

then the above process is repeated; if there is no otherwise clause, the construct

complains. If a body of commands is chosen for evaluation and its evaluation causes

at least one unhandled complaint, then the one-of construct will relay the first

complaint it notices.

C.9.5 IF Construct

Act2 provides a convenient construct for simple two-way decisions, the if

construct. It has the form

(if expression
(then do commands)
(else do commands))

As expected, this is simply a convenient form of writing
(one-of
(1f expression do commands)
(1f (-• expression) do commands))

C.9.6 CASE-FOR Construct

Another composite construct is used for handling the result of evaluating an

(arbitrarily complex) expression. It allows the pattern-matching of the message

from the evaluation's reply or complaint, followed by the evaluation of some body

of commands associated with the winning matcher. The match can involve binding

symbols to parts of the incoming message, which will be used in the evaluation of

151

1 - '• •' —±— MM *M~± i—»i ii •

• ^mmmmm^mmmmmmmmmmmwmmm^ • m • .• . „„

the chosen body. The pattern-matching itself provides a form of decision-making.

The case-for construct has the form:
(case-for expression

response-handlers
(otherwise response-handlers

(otherwise ...)))

When asked to evaluate itself, it evaluates the expression, whose result will be

matched {section D.9.1, page 176}. This will result in either a reply or a complaint

communication with some message. Correspondingly, there are two types of

response-handlers, one for matching reply communications,

(1s message-pattern do commands), and one for complaint communications,

(complaint message-pattern do commands). When a handler is involved in the

matching process, the following happens: if the type of communication is

incompatible, the match fails; otherwise, the expression denoting a pattern is

evaluated, yielding a pattern. If the evaluation complains, the whole construct

relays the complaint. Next, the pattern is asked to match the message from the

incoming communication.

The first set of response-handlers is checked concurrently for those capable of

handling the reply or complaint communication. The first one noticed which can

handle the communication is chosen, and the commands in its body are evaluated in

the evaluation environment for the construct extended with any bindings

established in the pattern-match. If all of these attempts at matching fail: if there is

an otherwise clause, the matching attempt is continued; if there is none, and the

communication being matched is a complaint, that complaint is relayed, otherwise a

standard complaint is generated.

152

1"—' •• ' —

CIO Context-Sensitive Commands

Act2 provides a few commands whose meaning depends upon the context in

which they appear. There are two major contexts in which commands appear: in

the bodies of composite expressions such as let, one-of, or case-for expressions (the

expression-body-coniexi)\ and in the bodies of communication handlers in

expressions such as create or create-unserialized, which describe the behavior of

actors (the handler-body-context).

C.10.1 REPLY Command

The reply command represents the transmission of a specified reply

communication to some unspecified target. The target of the reply depends upon

the context in which the reply command occurs. The reply command has the form

(reply expression). When asked to evaluate itself, it asks the expression to

evaluate itself, then sends the result as a message in a reply communication to the

unspecified target {section D.8, page 174}. Examples of this will appear below.

Should the evaluation of the expression complain, that complaint is transmitted to

prevailing complaint-department instead. The target of the reply depends on the

context in which the reply command occurs.

If the reply command occurs in a handler-body-context, the behavior depends

upon the type of communication received. The reply command is intended to be

used only when handling request communications, which contain a customer and

complaint department If this is the case, the reply will be sent to the customer.

Should any problems occur in evaluation, the resulting complaint will be relayed to

the complaint department. In the event that the incoming request is not a request,

some implementation error exists, so a complaint is sent to the implementor of the

actor. For example, consider a strange-actor abstraction defined as

L
153

• mm i an in —»-.

1

(define (new strange-actor)
(create

(is-request sm do (reply 3))
(1s-compla1nt =m do (reply 4))))

If such an actor receives a request, it will transmit a reply with message 3 to the

customer included in the request. Notice that this customer is not mentioned

anywhere in the Act2 implementation of the actor. If such an actor receives a

complaint, the reply command, not having a customer to which to reply, will instead

complain of an implementation error.

If the reply command occurs in an expression-body-context, we think of the

evaluation of the command as occurring in response to a request for evaluation of

the expression. Therefore, the reply is sent to that request's customer. Should a

complaint occur in the evaluation, it is relayed to the request's complaint-

department, as usual. The net effect of this is that the reply command denotes the

value of the expression. For example, consider the expression
(+6

(let ((= x match 3)
(=y match 4)) do

(reply (• x y))))

The let construct is used as an expression. The reply command in its body indicates

that the construct will reply with a 12 when asked to evaluate itself as an expression.

The + expression will therefore reply with a 17 when asked to evaluate itself as an

expression.

Exactly one reply or complain command must be encountered in the

evaluation of a composite expression's body. If neither is evaluated, or more than

one is evaluated, then a complaint is generated.

154

•----•-•«• -...-- - .

'"•"— ^mmmimmp

C.10.2 COMPLAIN Command

The complain command is similar to the reply command, and has the form

(complain expression). Rather than sending a reply with the denoted actor as its

message, the complain command transmits a complaint containing it instead. In

essence, the complain command indicates that the evaluation of this expression

should result in a complaint

C.10.3 BECOME Command

The become command may occur in the body of a communication handler in

an expression which creates an actor. We have already seen an example of this in

the account example {section 2.3, page 34}, reproduced below with the become

commands in bold italics.
(define (new account

(with balance sb))
(create
(is-request (a balance) do (reply (a balance)))
(1s-request (a deposit (with amount sa)l do

(become (new account (with balance (+ b a))))
(reply (a deposit-receipt (with amount a))))

(Is-request (a withdrawal (with amount = a)) do
(let ((=new-balance match (- b a))) do

(1f (> new-balance 0)
(then do

(become (new account (with balance new-balance)))
(reply (a withdrawal-receipt (with amount a))))

(else do
(complain (an overdraft))))))))

It has the form (become expression), where expression denotes a replacement

actor. The become command may be evaluated when the actor accepts a

communication. When it is evaluated, it first asks the expression to evaluate itself.

If the expression evaluation complains, that complaint is relayed through the

become command. Otherwise, the actor changes its behavior such that it is

indistinguishable from the replacement actor resulting from the evaluation of the

155

'—• I I -

expression in the become command. For more details, see {section D.8, page 173}

and {section D.10.4, page 189}.

No more than one become command should be evaluated in the evaluation of

a handler body. If an attempt to do this is made, a complaint will be generated. The

become command is not permitted in an expression-body-context. If it does occur

there, a complaint will be generated. For example, the become command would be

inappropriate in a context such as

(+ 5
(l8t ((=x match 3)

(=y match 4)) do
(become (* x y))
(reply (• x y))))

If the actor was created with a new expression declared by a define expression

of the form (define (new ...) (create...)), the expression in a become

command in one of its handlers can specify values for some of the attributes, and

fillers for the rest will be derived from the actor itself. That is, only those attributes

which are different need be mentioned. For example, the new expression in the

become command below is equivalent to

(new checking-account (with balance ...) (with owner o)):

(define (new checking-account (with balance = b) (with owner =o))
(create
(1s-request (a deposit ...) do

(become (new checking-account (with balance ...)))
...)

156

^..ii. I
I

— "'•• ——

Cll Other Commands

C.ll.I CONCURRENT and SEQUENTIAL Commands

The concurrent and sequential commands have the form

(concurrent commands) and (sequential commands). Commands are normally

evaluated concurrently in Act2, so unless nested inside a sequential command, a

concurrent command serves only to group a set of commands into a single

command. This is useful in conjunction with the handle-complaints command,

which is described below. The net effect of a concurrent command is to cause the

concurrent evaluation of the commands it contains. The sequential command, on

the other hand, causes the commands to be evaluated sequentially, in order of

occurrence. If any of the commands in either should complain, then the sequential

or concurrent command simply relays the first complaint it notices.

C.l 1.2 HANDLE-COMPLAINTS Command

The case-for construct is useful for handling complaints generated in the

evaluation of an expression. It is also useful to be able to handle complaints

generated in the evaluation of a command. The handle-complaints command does

exactly this. For example, if we wish to handle some of the complaints which might

arise in the body of a communication handler for some actor, we might define the

actor as
(define (new foo ...)

(create
(1s-request ... do

(handle-complaints command
(complaint (a bar ...) do ...)

or if we wish to handle complaints from more than one command, wc can group

those commands with a concurrent command, as in

157

«Mil a&J_a^MMbia__

•^•^"••" " ' ' ^*^^*mmmmmm—mmm^mm—mmmmm.

(define (new foo ...)
(create

(is-request ... do
(handle-complaints (concurrent commands)

(complaint (a bar ...) do ...)

It looks very similar to the case-for command. Rather than guarding an

expression, it guards a command. Rather than having both is and complaint

handlers, it has only complaint handlers, since commands do not reply with a value.

Therefore, this command has the form, where any of the otherwise clauses may be

omitted:

(handle-complaints command
(complaint pattern do commands)

(otherwise (complaint pattern do commands)

(otherwise ...)))

If no complaints are generated by commands meaning of the

handle-complaints is the same as the meaning of command itself. If a complaint is

generated in the evaluation of command, then the behavior of the handle-complaints

is very similar to that of a case-for construct used as a command. Each set of

complaint handlers will be tried in turn.

C.I 1.3 USING-SPONSOR Construct

Act2 makes use of special actors known as sponsors for resource management,

in order to impose some control over parallel computation. Normally, users need

not bother with these, since the default policies for resource usage are adequate for

average use. Programmers desiring more control over resource usage by different

commands or expressions may make use of the using-sponsor construct. It has the

form (using-sponsor expression do commands).

158

• "' i mi nil inii^atig mmm* *%n u«i .--....

mm m —» ——<—
mm

All communications transmitted have a sponsor as an acquaintance. By

default, this sponsor provides the resources for the computation performed upon

acceptance of the communication. This sponsor can be bound to an identifier when

matching the communication, then used later in a using-sponsor construct.

When the construct is evaluated, it evaluates expression, which should denote

a sponsor. This sponsor is used to provide resources for the evaluation of

commands in the body of the construct. The using-sponsor construct will relay any

complaints generated in the evaluation of the expression or of the commands.

C. 11.4 Comments

Comments can be inserted anywhere in Act2 code where separators such as

space characters or other white-space can occur. A comment begins with a semi-

colon (;) and ends with the next end-of-line character. Any sequence of characters

can occur between these.

C.12 Syntactic Extension

In Act2, user input is read in as list structure and symbols. Whatever is read in

is asked to parse itself as either an expression or a command, and is provided with

two special keyword environments. Symbols (and numbers) ignore the

environments and parse themselves directly, but a list or sequence will scan itself

from left to right, looking for a symbol which has been declared as a keyword.

Mechanisms for declaring such keywords will be presented below.

Each keyword environment associates a symbol with an actor which parses

sequences. When a list or sequence is asked to parse itself as an expression, it scans

itself from left to right. Whenever it encounters a symbol, it looks that symbol up in

159

the expression-keyword environment If the symbol is not a ke> word, the scan

continues. If it is a keyword, the parser to which it is bound is asked to parse the

sequence.

Users share common parsing environments for the basic Act2 language

definition. In addition, each user's environment has private environments for

personal extensions. These personal environments are bound to the identifiers,

standard-act2-express1ons and standard-act2-commands.

The defexpression and defcommand expressions are included in Act2 for

convenient extension of these personal parsing environments. Syntactic extension is

meant less for casual users than for language designers embedding new languages in

Act2.

C.12.1 DEFEXPRESSION Expression

The defexpression expression has the form (defexpression symbol exp).

When asked to evaluate itself, the expression proceeds with the evaluation of exp,

which should be an expression denoting or creating an actor which will parse a

sequence identified with the symbol. It then asks the default expression-keyword

environment to extend itself with a mapping from the symbol to the parser. If any

unhandled complaints are generated in these attempts, they are relayed as the

response from the evaluation of the defexpression.

Here is an example of the use of defexpression to declare a new kind of

expression with the form (delay expression), which will provide a lazy evaluation

capability. When evaluated, the delay expression will return immediately with a

newly created delay actor, without evaluating expression. If and when the delay

actor is ever sent a communication, the delayed expression will be evaluated, and the

160

mammHmm -••-• • .—.

result will be sent the communication.

Here we establish the expression keyword, and install an appropriate parser.

The full implementation of the parser is shown, to illustrate the various messages

which get passed around. In practice, there would be a set of parameterized parser

abstractions available, and only a simple instantiation of one of them would be

required.
(defexpresslon delay

(create
(is-request (an expression-parse

(with source =src)
(with expression-keywords =ek)
(with command-keywords = ck))

do
(case-for sre

(1s ['delay =exp] do
(reply

(new delay-expression
(with arg

(ask exp (a parse-yourself-as-express1on
(with expression-keywords ek)
(with command-keywords ck)))))))))))

Here is an implementation of an abstract syntax actor abstraction for

representing delay expressions.

161

..i.

r •^•^^^•^i

(define (new delay-expression (with arg =exp))
(create
(is-request (an expresslon-eval (with environment =env)) do

(reply
(create ;; a serializer representing the evaluated expression.
(1s-commun1cat1on =com do

;; 1f 1t ever gets a communication,
;; we should eval the expression 1n original environment.
(case-for (ask exp (an expresslon-eval

(with environment env)))
(1s rvalue do ;; 1f the evaluation succeeds:

(send-to value com) ;; send the communication to ft, and
;; become the result, so future communications go
;; directly to 1t.
(become value))

(complaint treason do ;; 1f the evaluation falls:
(complain reason) ;; relay the complaint, and
;; become something that will complain 1n the same way
;; to any further communications,
(become (create-unser1a11zed

(1s-commun1cat1on =x do
(complain reason))))))))))))

Here is a simple example of the creation of an expression,

(prevailing-environment), whose value is the current environment, in which the

expression itself is evaluated. A single actor serves both as parser and as abstract

syntax.
(defexpresslon prevailing-environment

(label =self
(create-unserlallzed
(is-request (an expression-parse) do (reply self))
(1s-request (an expresslon-eval

(with environment =e))
do (reply e)))))

C.12.2 DEFCOMMAND Expression

The dcfcommand expression is identical to the defexpression expression,

except that it establishes a new command keyword, rather than a new expression

keyword.

162

—• —m

Appendix D

A Meta-Circular Description of Act2

This appendix contains a meta-circular description of Act2. It consists of Act2

implementations of abstract syntax objects representing the expressions and

commands in Act2. Our preliminary Scripter implementation of Act2 was very

closely patterned after this description.

To save typing space, an expression of the form (evaluate exp env) was

introduced. It means exactly the same as

(ask exp (an expresslon-eval (with environment env))).

This description relies on some aspects of Act2 which increase the conciseness

of the code. For example, the evaluation of an expression will directly relay a

complaint in the evaluation of one of its sub-expressions. Unhandled

communications will result in a complaint. These and similar cases are explicitly

included in the Scripter implementation.

D.l Primitive Actors

Primitive actors are implemented in cooperation with the underlying apiary.

They are represented directly as the corresponding Lisp objects. Primitive scripts

are associated with each category of primitive actors. Their meta-circular

descriptions are simply a high-level representation of their behavior.

Numbers include integers and reals, both positive and negative. They are

represented by Lisp fixnums, flonums, and bignums.

163

(define (now number-expression (with value =v))
(label self
(create-unser 1alIzed
(1s-request (an expresslon-eval) do (reply v))
(is-request (a match (with bindings =b) (with object =o)) do

(case-for o
(Is self do (reply (a successful-match (with bindings b))))
(otherwise (1s something do (reply (a falled-match))))))

(1s-request (a zerop) do (reply (= v 0)))
;; similarly: plusp minusp oddp minus abs 1+ 1- fix float
(1s-request (a + (with operand =x)) do (reply (+ x v)))
;; similarly: •>>*<<* max mln - • // remainder gcd

Symbols serve as keywords and identifiers in Act2. In the underlying

implementation, T also represents the logical value of truth, and NIL represents the

logical value of falsity, NIL also serves as an empty list.
(define (new symbol-expression (with symbol =s))
(label self
(create-unser1al1zed
(1s-request (an expresslon-eval (with environment =env)) do

(reply (ask env (a lookup (with symbol s)))))
(is-request (an Install (with creation-expression see)

(with environment = env)) do
(case-for (ask ce (an expresslon-eval (with environment env)))

(1s =v do
(reply (ask env (a grow (with symbol s) (with value v)))))))

A sequence represents an ordered collection of actors. It can be used as a

pattern, with bind-expressions for elements. By default, sequences are represented

as Lisp lists.

164

linfill i^ü^iiii — ... , — *>

(define (new sequence (with first =f) (with rest =r))
(create-unserlallzed
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply (new sequence (with first (ask f aval))
(with rest (ask r eval)))))

(1s-request (a first) do (reply f))
(is-request (a rest) do (reply r))
(is-request (a length) do (reply (+ 1 (ask r (a length)))))
(is-request (a match (with bindings =b) (with object =o)) do

(case-for o
(1s (a sequence (with first =ol) (with rest sor)) do

(case-for (ask f (a match (with bindings b) (with object ol)))
(1s (a successful-match (with bindings =b)) do

(reply (ask r (a match (with bindings b)
(with object or)))))

(otherwise (1s something do (reply (a falled-match)))
(complaint something do (reply (a falled-match))))))

(otherwise (1s something do (reply (a falled-match))))))

D.2 Simple Expressions

The quote expression simply prevents the parsing and evaluation of an

expression.
;; expression: (quote expression)
(define (new quote-expression (with source =s))
(create-unserlallzed
(is-request (an expresslon-eval) do (reply s))

The ask expression represents the sending of a request to some target, and the

receipt of a response. It looks to the programmer like a two-way communication

exchange.
; expression (ask target message)
(define (new ask-expression

(with target st)
(with message HB))

(create-unseHal 1zed
(Is-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply (ask (ask t eval) (ask m eval))))
...))

A convenient expressional notation is provided for primitive operations, such

as addition, subtraction, and conjunction. A simple protocol is used, so these

165

.-——„.. '-"-•-^ -

1 " •"'•' mmmmmmmmmm 1 ' •

operations arc all represented with the same ae abstract syntax object.
; expression: (+ 1 2) (1 + 2) ...
(define (new binmy-operutor

(with operator =op)
(with lhs = left)
(with rhs = r1ght))

(create-unseHallzed
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do

(reply (ask (ask left eval)
(an op (with operand (ask right eval))))))

...»

The delay expression provides the ability to perform lazy evaluation on

demand.
(define (new delay-expression

(with expression =exp))
(create-unser1a11zed

(1s-request (=eval wh1ch-1s (an expresslon-eval)) do
(reply

(create
(i*-communication = com do

(case-for (ask exp eval)
(1s =va1ue do

(send-to value com)
(become value))

(complaint =msg do
(complain msg)
(become

(create-unser1al1zed
(1s-comimin1cat1on something do

(complain msg))))))))))))

D.3 Variable Binding

Act2 has a few special expressions for use as patterns. One is for binding an

identifier to the corresponding actor in the object of the match. Others put

restrictions on the actors which can be bound.

The bind expression is used as a pattern, to bind an identifier to the actor it is

supposed to match. If the identifier has not been bound during the match, or if it

has been bound to the same actor as the one being matched, the match succeeds.

Otherwise, the match must fail.

166

MfltiM

~^"
,

"(bind x)"
(define (new bind-cxpression (with symbol = s))
(label self
(create-unser 1 all zed
(1s-request (an expresslon-eval) do (reply self))
(is-request (a match (with bindings = b) (with object - o)) do
(case-for (ask b (a lookup (with symbol s)))

(complaint =m do
(reply (a successful-match

(with bindings
(ask B (a grow

(with symbol s)
(with value o)))))))

(1s =v do (case-for o
(same v do (reply (a successful-match (with bindings b))))
(otherwise do (reply (a falled-match)))))))

The which-is expression is usually used to place restrictions on what a bind

expression can match. Essentially, the which-is expression is a binary conjunction

operator for descriptions.
; expression: "(wh1ch-1s =x PATTERN)"
(define (new wflkh-is-expression (with lhs =1) (with rhs sr))

(create-unserlallzed
(1s-request (= whlch-ls (an expresslon-eval)) do

(reply (new wh1ch-1s-express1on (with lhs (ask 1 eval))
(with rhs (ask r eval)))))

(Is-request (a match (with bindings sb) (with object so)) do
(case-for (ask 1 (a match (with bindings b) (with object o)))

(1s (a successful-match (with bindings sbl)) do
(reply (ask r (a match (with bindings bl) (with object o)))))

(otherwise (1s something do (reply (a falled-match))))))

The sucht hat expression provides another way to filter a pattern-match. It

provides a description to match, as usual. It also provides a predicate which decides

whether or not to let the match succeed after the match with the description has

succeeded.

167

«--.* ...

(define (new suc/ithat-expression
(with description sd)
(with predicate =p))

(create-unserial1zed
(1s-request (=eval wh1ch-1s (an expresslon-eval

(with environment =env))) do
(let ((=desc match (ask d aval))) do

(create-unserial 1zed
(1s-request (smsg wh1ch-1s (a match

(with bindings =b)
(with object =o))) do

(case-for (ask desc msg)
(1s (a falled-match) do (reply (a falled-match)))
(1s (-result wh1ch-1s (a successful-match

(with bindings =b))) do
(1f (evaluate p (new environment

(with primary b)
(with secondary env)))

(then do (reply result))
(else do (reply (a falled-match))))))))))))

D.4 Abstraction

Act2 has a single abstraction mechanism. There are two aspects of the

abstraction mechanism: definition of an abstraction and instantiation.

i

The define expression is for defining a new abstraction. The expression

contains a template (or "pattern") characterizing a set of new expressions, and

another expression which denotes a meaning for those new expressions.
; expression: (define ereaiion-template abstracted-expression)
(define (new define-expression

(with creation-template st)
(with abstracted-expression =ce))

(create-unserial1zed
(Is-request (an expresslon-eval (with environment =«)) do

(reply (ask t (an Install
(with expression ce)
(with environment e))))

The new expression is for instantiating abstractions.

168

m*x fittHK. •*- * -

(define (new new-expression
(with concept =c)
(with attribute-sequence =as))

(create-unseHallzed
(is-request (an Install (with expression =ce)

(with environment sej) do
(case-for (ask e (a lookup (with symbol c)))

(1s (= ad wh1ch-1s (an atomic-description)) do
(reply (ask ad (an 1nsta1l-1mplementat1on

(with environment e)
(with expression ce)
(with pattern

(evaluate (new Instance-description
(with concept c)
(with attribute-sequence as))

e))))))))
(1s-request (=eval wh1ch-1s (an expression-aval)) do

(case-for (ask c aval)
(1s (= ad wh1ch-1s (an atomic-description)) do
(case-for (ask ad (a summar1ze-1mplementat1on))

(1s (an installation (with environment sei)
(with expression seel)
(with pattern =cpl)) do

(let ((=state match
;; There's actually a bit more to 1t than this,
(ask (new Instance-description

(with concept c)
(with attribute-sequence as))

aval)))
do
(case-for (ask cpl (a match

(with bindings (new empty-layer))
(with object state)))

(1s (a successful-match (with bindings =b)) do
(reply (ask eel

(an expression-aval
(with environment

(new environment
(with primary b)
(with secondary el)))

(with pattern cpl)
(with state state))))))))))))

169

• "•

D.5 I'Alcndinj» Listener's I'nviroiiment

The (lefname expression is used to associate a name with the result of

evaluating an expression, at the top level listener.
(define (new defname-expression

(with symbol ssyro)
(with expression sexp))

(create-unserlal1zed
(1s-request (=eva1 wh1ch-1s (an expression-aval

(with environment e))) do
(reply (ask e (a grow

(with symbol sym)
(with value (ask exp eval))))))))

The dcfconcept expression is for extending the prevailing environment with a

new concept. It is meant to be used at top level, from a listen-loop.
(define (new de)Concept-expression (with symbol =s))
(label self
(create-unserlallzed
(1s-request (a expresslon-eval (with environment =e)) do

(let ((something match
(ask e (a grow

(with symbol s)
(with value (new concept (with name $))))))) do

(reply s))))))

D.6 Creating Instanee Descriptions

An a or an expression represents the creation of an instance description. Its

evaluation involves the evaluation of the concept and attribute fillers, followed by

the creation of an instance description.

170

 -•-* -irMiMfcaaiMMMfrwMt HUM t • • --k

•II »111« NNM

; expression "(an automobile (with color red))"
(define (new a-exprcssion

(with concept —c)
(with attribute-sequence sas))

(label self
(create-unseHal 1zed
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do
(reply (new Instance-description

(with concept (ask c eval))
(with attribute-sequence

(new eval-attrlbute-sequence
(with attribute-sequence as)
(with eval-message eval))))))

This abstraction evaluates a sequence of attributes from an a-expression, for

creating an instance description.
(define (new eval-attribute-sequence

(with attribute-sequence = as)
(with eval-message =eval))

(case-for as
(1s [] do (reply []))
(1s (a sequence (with first =f) (with rest =r)) do

(reply (a sequence
(with first (new eval-attribute

(with attribute f)
(with eval-message eval)))

(with rest (new eval-attrlbute-sequence
(with attribute-sequence r)
(with eval-message eval))))))))

This abstraction evaluates a single attribute. An attribute is represented as a

sequence of three elements: the kind, the relation, and the filler. It is evaluated by

evaluating its filler.
(define (new eval-attribute

(with attribute =a)
(with eval-message =eval))

(case-for a
(1s [= kind =relat1on =f11ler] do

(reply [kind relation (ask filler eval)]))))

171

***mmä .-:_s^ -HW i_

"• 111 • '

D.7 Creating Actors

The create expression is for creating actors with specified behaviors. Here, we

give a single implementation, of serializers. An implementation of create-

unserialized would be almost identical. Expressions for creating actors whose

internals arc visible for pattern-matching also have a very similar implementation.
(define (new crcate-expression

(with handler-group; =hgs))
(create-unseHal 1zed

(•is-request (= eval wh1ch-1s
(an expresslon-eval (with environment =e))) do

(reply
(new ser1al1zer

(with environment e)
(with descriptor

(case-for eval
(1s (an expresslon-eva? (with pattern =p)) do

(reply (ask p (a make-descriptor (with environment e)))))
(otherwise (1s something do (reply (a something))))))

(with state
(case-for eval

(1s (an expresslon-eval (with state =s)) do
(reply s))

(otherwise (Is something do (reply (a something))))))
(with behavior

(new ser1al1zer-behav1or
(with handler-groups

(new eval-handler-group-patterns
(with handler-groups hgs)
(with environment •))))))))

...))

This abstraction ripples down the groups of communication handlers in a

create expression, calling on cval-handler-sequence-patterns to evaluate the patterns.

The structure of a create expression is similar to the structure of case-for and one-of

constructs. Communication handler groups are represented as a sequence of

handler groups. A handler group is represented as a sequence of handlers. A

handler is represented as a sequence containing three elements: a keyword

indicating the significance of the pattern, a pattern, and a sequence of commands

comprising the body.

172

mum

(define (new evahhandler-group-pattcrns
(with handler-groups shgs)
(with environment se))

(case-for hs
(1s [] do (reply []))
(Is (a sequence (with first =f) (with rest =r)) do

(reply (a sequence
(with first (new eval-handler-sequence-patterns

(with handler-sequence f)
(with environment e)))

(with rest (new eval-handler-group-patterns
(with handler-groups r)
(with environment e))))))))

This abstraction ripples down a sequence of communication handlers,

evaluating the patterns.
(define (new eval-handler-sequence-patterns

(with handler-sequence =hs)
(with environment =e))

(case-for hs
(1s [] do (reply []))
(Is (a sequence

(with first [=keyword ^pattern = bodyJ)
(with rest =r))

do
(reply (new sequence

(with first [keyword (evaluate pattern e) body])
(with rest (new eval-handler-sequence-patterns

(with handler-sequence r)
(with environment a))))))))

D.8 Simple Commands

The become command designates a replacement for an actor, and causes the

actor to become indistinguishable from its replacement
; command: "(become ...)"
(define (new become-command (with replacement-actor =r))
(create-unser1allzed
(1s-request (a command-aval

(with environment a)
(with state =s)) do

(reply (a become-effect
(with replacement-actor

(ask r (an expresslon-eval
(with environment e)
(with default s)))))))

...»

173

W I '••'• m—^^

The send-to command causes a communication to be sent to some target. The

reply-to and complain-to commands are implemented in a very similar manner.
command: "(send-to T C)". "(reply-to T M)", "(compla1n-to T M)H

nd (with target (define (new send-to-conwia
(create-unserlallzed
(1s-request (a command-aval (with environment =e)) do

(case-for (evaluate t e)
(1s = target do
(case-for (evaluate c e)

(1s = com do
(send-to target com)
(reply (a completed-command-effect)))

(complaint =m do
(compla1n-to target m)
(reply (a completed-command-effect)))))))

...))

t) (with communication =c))

The send command causes a reply to be sent to some default customer or a

complaint to be sent to some default complaint-department. The reply and

complain commands are implemented in a similar manner.
; command: "(send ...)". "(reply ...)", "(complain ...)"
(define (new send-comntand (with communication scorn))
(create-unserlallzed
(1s-request (a command-eval

(with environment se)
(with communication =c)) do

(case-for c
(1s (a request

(with customer scut)
(with complaint-department =cd)) do

(case-for (evaluate com e)
(1s (= r wh1ch-1s (a reply)) do

(reply (a send-effect
(with communication r)
(with target cus))))

(1s (= r wh1ch-1s (a complaint)) do
(reply (a send-effect

(with communication r)
(with target cd))))))))

174

— - •-

0.9 Composite Constructs

D.9.1 Case-for Construct

The case-for construct dispatches on the response from the evaluation of an

expression. It can have several groups of handlers for the response. They are

represented as a sequence of sequences of handlers. A handler is represented as a

sequence with three elements: a keyword [1s or complaint], a pattern, and a

command sequence comprising the body.

175

(define (new COSe-fofconstruct (with test-expression = te)
(with handler-groups = hgs))

(create-unserlalIzed
(is-request (a command-eval

(with environment = e)
(with communication =c)
(with state =s)) do

(case-for (new f1nd-case-for-body-from-expr (with test-expression te)
(with handler-groups hgs)
(with environment a))

(1s (a found-case-for-body (with body 3b) (with environment =e)) do
(reply (new eval-command-sequence (with command-sequence b)

(with environment e)
(with communication c)
(with state s))))

(1s (a could-not-f1nd) do
(case-for c

(1s (a complaint) do (send c))
(1s (a reply) do

(complain (an unmatched-reply (with reply c))))))))
(1s-commun1cation (=com whlch-ls

(a request
(with message

(an expresslon-eval
(with environment =e))))) do

(case-for (new f1nd-case-for-body-frcm-expr (with test-expression te)
(with handler-groups hgs)
(with environment e))

(1s (a found-case-for-body (with body =b) (with environment = e)) do
(reply (new eva1-expres$1on-body

(with command-sequence b)
(with environment e)
(with communication com)
(with state (ask com (a descriptor))))))

(complaint (a could-not-find (with communication Be)) do
(case-for c

(1s (a complaint) do (send c))
(Is (a reply) do

(complain (an ummatched-reply (with reply c))))))))
.))

This abstraction evaluates the test expression in the case-for construct, then

sets up find-case-for-body to do the rest of the work.

176

(define (new fiiul-case-forhody-from-expr
(with test-expression ste)
(with handler-groups shgs)
(with environment =env))

(case-for (evaluate te env)
(1s =v do

(reply (new f1nd-case-for-body
(with keyword Ms)
(with message v)
(with handler-groups hgs)
(with environment env))))

(complaint ~m do
(reply (new f1nd-case-for-body

(with keyword 'complaint)
(with message m)
(with handler-groups hgs)
(with environment env))))))

This abstraction ripples down the sequence of handler groups, sequentially

trying each for a match. Each handler group corresponds to a set of handlers nested

in an otherwise clause.
; for each handler 1n 'hs: aval pattern, try to match, return body and env.
(define (new find-case-forbody

(with keyword =k)
(with message =m)
(«1th handler-groups shgs)
(with environment =env))

(case-for hgs
(1s [] do (reply (a could-not-f1nd)))
(1s (a sequence (with first —f) (with rest =r)) do

(case-for (new f1nd-case-for-body-l
(with keyword k)
(with message m)
(with handler-sequence f)
(with environment env))

(1s =x do (reply x))
(Is (a could-not-f1nd) do

(reply (new f1nd-case-for-body
(with keyword k)
(with message m)
(with handler-groups r)
(with environment env))))))))

This abstraction ripples down a handler group [a sequence of handlers],

looking for a matching handler. Specifications state that these patterns are checked

concurrently. This can be achieved in a concrete implementation by eagerly

evaluating recursive calls of this abstraction.

177

-•

(define (new find-cast'-jor-body-I
(with keyword = k)
(with message =m)
(with handler-sequence =hs)
(with environment =env))

(case-for hs
(1s [] do (reply (a could-not-f1nd)))
(Is (a sequence

(with first [=keyword =pattern =body])
(with rest =r)) do

(1f (= keyword k)
(then do
(case-for (ask (evaluate pattern env)

(a match
(with bindings (new empty-layer))
(with object m)))

(1s (a successful-match (with bindings =b1n)) do
(reply (a found-case-for-body

(with body bod)
(with environment

(new environment
(with primary bin)
(with secondary env))))))

(1s (a falled-match) do
(reply (new f1nd-case-for-body-l

(with keyword k)
(with message m)
(with handler-sequence r)
(with environment env))))))

(else do
(reply (new f1nd-case-for-body-l

(with keyword k)
(with message m)
(with handler-sequence r)
(with environment env)))))

D.9.2 0ne-of Construct

The one-of construct is a very flexible and general construct for making

decisions based on Boolean predicates. It is similar in structure to the case-for and

create expressions. It is represented as a sequence of arm groups, each of which is a

sequence of arms. The arm groups are tried sequentially, looking for one whose

predicate yields truth. The arms in each arm group are specified as being tried

concurrently. Each arm consists of a predicate and a command sequence which

serves as the body.

178

• ' •"••

(define (new onc-of-construct (with arm-groups = ags))
(label self
(create-unserlal 1zed
(is-raquest (a command-eval

(with environment =e)
(with communication =c)
(with state =s)) do

(reply (new eval-command-sequence
(with command-sequence

(new f1nd-one-of-body (with arm-groups ags)
(with environment e)))

(with environment e)
(with communication c)
(with state s))))
ton
•is
(with message

(an expresslon-eval (with environment =e)))))

(1s-commun1cat
(scorn which
(a request

do
(reply (new

)))

eval-express Ion-body
(with command-sequence

(new f1nd-one-of-body
(with arm-groups ags)
(with environment e)))

(with environment e)
(with communication com)
(with state (ask com (a descriptor))))))

This abstraction ripples sequentially down the sequence of handler groups,

calling find-one-of-body-1 on each group, until a body is found.
(define (new find-one-of-body

(with arm-groups =ags)
(with environment senv))

(case-for as
(1s [] do (complain (a not-found)))
(1s (a sequence (with first St) (with rest =r)) do

(case-for (new f1nd-one-of-body-l
(with arm-sequence f)
(with environment env))

(1s =b do (reply b))
(complaint (a not-found) do

(reply (new f1nd-one-of-body
(with arm-groups r)
(with environment env))))))))

This abstraction ripples down an arm group, which is represented as a

sequence of arms, looking for an arm whose predicate yields truth. An arm is

represented by a sequence with two elements: a predicate and a command

179

111 • —.

sequence.
(define (new find-one-of-body-1

(with arm-sequence =as)
(with environment =env))

(case-for as
(1s [] do (complain (a not-found)))
(1s (a sequence

(with first [^predicate =body])
(with rest =r)) do

(1f (evaluate predicate env)
(then do (reply body))
(else do (reply (new f1nd-one-of-body-l

(with arm-sequence r)
(with environment env))))))))

D.9.3 Let Construct

The let construct provides a general way to perform a number of pattern-

matches, then evaluate some commands using any bindings which resulted in the

matches. A degenerate, but very useful, case of this is simply binding an identifier

to the result of an expression. The group of matchers in a let construct are

represented as a sequence of matchers. Each matcher is represented as a sequence

containing two elements: a pattern for the match and an object for the match.

180

T

. . •

(define (new k't'Cüllstruct
(with matcher-sequence ütj
(with body =b))

(label self
(create-unseHallzed
(1s-request (a command-eval

(with environment =e)
(with communication ~c)
(with state = s)) do

(reply (new eval-command-sequence
(with command-sequence b)
(with environment

(new environment
(with primary

(new process-matcher-sequence
(with matcher-sequence ms)
(with bindings (new empty-layer))
(with environment e)))

(with secondary e))}
(with communication c)
(with state s))))))

(1s-commun1cat1on
(scorn wh1ch-1$
(a request (with message

(an expresslon-eval (with environment =e)))))
do
(reply (new eval-expresslon-body

(with command-sequence b)
(with environment

(with primary
(new process-matcher-sequence

(with matcher-sequence ms)
(with bindings (new empty-layer))
(with environment e)))

(with secondary e))
(with communication com)
(with state (ask com (a descriptor))))))))

This abstraction ripples down the sequence of matchers, performing each

match. If successful, it replies with a layer of bindings established during the

matching.

181

i
^ •

•Mi

(define (new pivccss-nuitcher-sequence
(with matcher-sequence =ms)
(with bindings =b)
(with environment =env))

(case-for ms
(1s [] do (reply b)))
(1s (a sequence

(with first [^pattern =object])
(with rest =r)) do

(case-for (ask (evaluate pattern env)
(a match

(with bindings b)
(with object (evaluate object env))))

(1s (a falled-match) do (complain (a cannot-match)))
(1s (a successful-match (with bindings =b)) do

(reply (new process-matcher-sequence
(with matcher-sequence r)
(with bindings b)
(with environment env)))))))

D.9.4 Other Constructs

The if construct can be implemented as a syntactic extension of Act2, or can

be implemented in a way similar to the implementation of one-of. An if construct of

the form

(1f predicate
(then do then-commands)
(else do else-commands))

has the same meaning as a one-of construct of the form
(one-of

(1f predicate do then-commands)
(otherwise (1f true do else-commands)))

The label expression can also be implemented either directly, or as a syntactic

extension. A label expression of the form (label symbol expression) has the same

meaning as a let expression of the form

(let ((=symbol match (delay expression))) do
(reply symbol))

Notice the presence of the delay expression, to postpone the evaluation of the

expression. This is necessary, since the expression can refer to its own value.

182

 tität^t -: -

'"' «•> ••»

D.lü Subsidiary Abstractions

D.10.1 Environments and Layers

Environments are composed oflayers. The top layer of each environment can

be grown with new bindings of symbols to values. Therefore, environments are

serialized. Layers are unserialized, for speed. The top layer of an environment is

called its primary layer. Each environment also has a secondary environment.

(define (new environment
(with primary =pe)
(with secondary = se))

(create
(is-request (a grow (with symbol 38) (with value =v)) do

(let ((sx match (new environment
(with primary

(ask pe (a grow
(with symbol s)
(with value v))))

(with secondary = se))))
do (become x) (reply x)))

(Is-request (a lookup (with symbol =s)) do
(case-for (ask pe (a lookup (with symbol s)))

(1s :value do (reply value))
(complaint =message do

(reply (ask se (a lookup (with symbol s)))))))
(Is-request (=msg wh1ch-1s (a present (with symbol ••))) do

(reply (or (ask pe msg) (ask se msg))))
...))

In order to implement layers, we need to implement empty layers which

accept the same communications as layers and environments. An empty layer has

no bindings, and replies with a layer when asked to grow.
(define (new empty-layer)
(label self
(create-unseHal 1zed

(1s-request (a grow (with symbol ••) (with value =v))do
(reply (new layer

(with symbol a)
(with value v)
(with next self))))

(1s-request (a lookup (with symbol s)) do
(complain (a missing-binding (with symbol s))))

(is-request (a present) do (reply false))
•••)))

183

tlMUHUMfrfj^l

A layer is an unserialized collection of bindings of symbols to values. It can be

implemented as a recursive data structure, as shown here.
(define (new layer

(with symbol = s)
(with value =v)
(with next =n))

(label self
(create-unseHallzed

(1s-request (=msg wh1ch-1s (a lookup (with symbol = sym))) do
(1f (» s sym)

(then do (reply v))
(else do (reply (ask n msg)))))

(1s-request (=msg wh1ch-1s (a present (with symbol = sym))) do
(1f (• s sym)

(then do (reply true))
(else do (reply (ask n msg)))))

(is-request (a grow (with symbol = sym) (with value =val)) do
(reply (new layer

(with symbol sym)
(with value val)
(with next self))))

•••)))

D.10.2 Atomic Descriptions

The friendly interface to atomic descriptions is through the concept

abstraction. It allows a programmer to create an atomic description by providing

only its name.
(define (new concept (with name sn))
(reply
(new atomic-description

(with name n)
(with encryption-Id (new encryption-Id))
(with description-stuff (new description-stuff))
(with Implementation-stuff (new Implementation-stuff))
(with creation-stuff (new creation-stuff)))))

The full detail of atomic descriptions is managed by the atomic-description

abstraction. Each atomic description has a name, which is a symbol used mostly for

identification by humans, as well as an encryption-id, which is a unique

discriminator used to distinguish between independently-created atomic

descriptions. In addition, atomic descriptions have room for installing description-

184

lattice information (description-stuff), for installing implementation information

(implementation-stuff), and for aiding in bottoming out instance descriptions

(creation-stuff). The details of the latter are not important for this level of

description. The atomic description itself is unserialized, but has some serialized

acquaintances, such as implementation-stuff.
(define (new atomic-description

(with name = nam)
(with encryption-Id =e1d)
(with description-stuff =des)
(with Implementation-stuff = 1mp)
(with creation-stuff =cre))

(label self
(create-unserlal1zed
(1s-request (a match (with object =o) (with bindings =b)) do

; eventually match will be done with a low-level comparison of 'eld.
; 'eid 1s a unique encryption 1d associated with an atomic
;descr1pt1on when 1t Is created with a (defconcept).

(one-of
(If (Identical self o) do

(reply (a successful-match (with bindings b))))
;; should eventually let description-system have a crack at ft.
(otherwise do (reply (a fal led-match)))))

(1s-request (a converse-match ...) do ...)
(1s-request (=msg wh1ch-1s

(an Install-Implementation
(with environment =e)
(with creation-pattern =cp)
(with creation-expression =ce))) do

(reply (ask Imp msg)))
(1s-request (=msg wh1ch-1s (a summar1ze-1mplementat1on)) do

(reply (ask Imp msg)))
...))

When a define is evaluated, implementation information usually gets installed

in an atomic description as a result. It is in the implementation acquaintance that

this information is installed. This actor must be serialized, so redefinitions can

occur.

185

.

(define (new implementation
(with expression =exp)
(with environment senv)
(with pattern =pat))

(create
(1s-request (an Instill-Implementation

(with expression =expl)
(with environment = envl)
(with pattern =patl)) do

(become (new Implementation
(with expression expl)
(with environment envl)
(with pattern patl)))

(reply (a completion-report)))
(1s-request (a summar1ze-1mp1ementat1on) do

(reply (an Installation
(with expression exp)
(with environment env)
(with pattern pat))))

The implementation-stuff abstraction is a trivial interface to the

implementation abstraction. It is used to create an initial, null implementation. This

implementation simply complains that the abstraction does not yet have an

implementation.
(define (new implementation-stuff)

(new Implementation
(with expression

(function
(let ((something match 1)) do

(complain (an unlmplemented-abstractlon)))))
(with environment (new empty-layer))
(with pattern (a something))))

D.10.3 Instance Descriptions

The instance-description abstraction implements instance descriptions for

Act2. An instance description is represented as a concept and asequence of

attributes. Each attribute is represented as a sequence containing three elements:

the attribute kind, the attribute relation, and the attribute filler.

186

—. irfi III-IIM
W'P^HP^" •

-- .-.., -*._- i

MB

(define (new instance description
(with concept = c)
(with attribute-sequence = as))

(label self
(create-unserlalIzed
(1s-request (a match (with bindings = b) (with object so)) do

(reply (ask o (a converse-match
(with pattern (an Instance-description

(with concept c)
(with attributes as)))

(with bindings b)))))
(1s-request (a converse-match

(with pattern -
(an Instance-description

(with concept sei)
(with attributes = asl)))

(with bindings =b))
do ;; try to match self with Instance-pattern.
(1f (Identical c ci)

(then do
(reply (new match-attributes

(with patterns asl)
(with objects as)
(with bindings b))))

(else do (reply (a falled-match)))))
(1s-request (a make-descriptor (with environment =e)) do

(reply (new Instance-description
(with concept c)
(with attribute-sequence []))))

...)))

This abstraction matches the attribute-sequences from two instance

descriptions.

187

L
---••-"*"»""• •*+r

—1 '••"

(define (new match-atliiblltCS
(with patterns =ps)
(with objects = os)
(with bindings =b))

(case-for ps
(1s [] do (reply (a successful-match (with bindings b))))
(is (a sequence

(with first [=k1nd = relat1on = f11ler])
(with rest = res))

do ;; try to find a matching attribute in os.
(case-for (new match-attrlbute-in-sequence

(with kind kind)
(with relation relation)
(with filler filler)
(with objects os)
(with bindings b))

(1s (a successful-match (with bindings =b)) do
(reply (new match-attributes

(with patterns res)
(with objects os)
(with bindings b))))

(otherwise (1s something do (reply (a failed-match))))))))

This abstraction attempts to match a dismantled pattern attribute to an

attribute in a sequence of object attributes.
(define (new match-atmbute-in-sequence

(with kind =k)
(with relation =r)
(with filler =f)
(with objects =os)
(with bindings =b))

(case-for os
(1s [] do (reply (a failed-match)))
(1s (a sequence (with first [=kl ==rl =fl])

(with rest =res))
do ;; try to find a matching attribute 1n os.
(one-of
(1f (Identical r rl) do ;; found relation, now try to match filler.

(reply (ask f (a match (with bindings b) (with object fl)))))
(otherwise (if true do ;; keep looking for relation,

(reply (new match-attrlbute-in-sequence
(with kind k)
(with relation r)
(with filler f)
(with objects res)
(with bindings b)))))))))

188

*6m*mmk mmmmmi

D.10.4 SertatLecrs

This abstraction represents serialized actors. The implementation of

unserialized actors resembles this.
(define (new serializer

(with descriptor =d)
(with state =s)
(with behavior =b)
(with environment see))

(label self
(create

(1s-commun1cat1on =com do
(send-to b (a process-communication

;; the Incoming communication:
(with communication com)
;; the creation environment:
(with environment ce)
;; the actor's "type":
(with descriptor d)
;; a description of the actor, Including Internals.
(with state s)
;; the actor Itself:
(with self self)))))))

environment see)
descriptor =d)
state = s)
self sself))

This abstraction represents a serializer's behavior, or script.
(define (new serializerbehavior

(with handler-groups =hgs))
(create
(1s-request (a process-communication

(with communication scorn)
(with
(with
(with
(with

do
(case-for (new eval-matchlng-handler

(with handler-groups hgs)
(with descriptor d)
(with state s)
(with environment ce)
(with communication com)
(with self self))

(1s (a become- effeet, (with replacement-actor ra)) do (become ra))
(otherwise
(Is something do)
(complaint (a no-match) do

(complain (a rejected-communication (with communication com)))))))))

When an actor accepts a communication, it calls this abstraction to find a

189

***—-j— •

AD-A132 326 ISSUES IN THE DESIGN AND IMPLEMENTATION OF ACT2IU)
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB D G THERIAULT JUN 83 AI-TR-728

UNCLASSIFIED N00014-80-C-0505 F/G 9/2

n T

tm u.M.«; •mmmmmm l l in l —a—qg—i•>

1.0 £f •«• IM
¥* •— mil 2.2

i.i.
E |^

L25.IIIIII.4

2.0

1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

I . . ---—-•- --W.-.. .«..-^...^.,. • ••J.^«.,._ 1.

handler for the communication and evaluate the corresponding body,
(define (new evahmatching-handler

(with handler-groups =hgs)
(with descriptor =d)
(with state =s)
(with environment =ce)
(with communication = com)
(with self =me))

case-for hgs
(1s [] do

(reply (new try-default-handler«
(with descriptor d)
(with communication com)
(with state s)
(with self me))))

(1s (a sequence (with first =f) (with rest =r)) do
(case-for (new f1nd-and-eval-w1nn1ng-hand1er

(with handler-sequence f)
(with environment ce)
(with communication com)
(with state s))

(1s =x do (reply x))
(complaint (a no-match) do

(case-for (new try-default-handlers
(with descriptor d)
(with communication com)
(with state s)
(with self me))

(1s ax do (reply x))
(complaint (a no-match) do

(reply (new eval-match1ng-handler-w1thout-dafau1ts
(with handler-groups r)
(with descriptor d)
(with state s)
(with environment ce)
(with communication com)
(with self me))))))))))

This abstraction implements default handlers for all actors. These handle

communications such as requests to match, converse-match, and print

190

^•-'L" • "ffl • - ' '-— •--•--- u ^

——<—

(define (new Uy-defuult-hundkrs
(with descriptor =d)
(with communication =c)
(with state =s)
(with self =me))

;; shoild be able to write these as user code,
(case-for c

(1s (a request (with message (a match
(with object =o)
(with bindings =b)))

(with customer =cus))
do ;; need to be same actor as me for a match,
(one-of

(1f (identical me o) do
(reply-to cus (a successful-match (with bindings b))))

(otherwise do (reply-to cus (a falled-match)))))
(Is (a request

(with message (wh1ch-1s =m (a converse-match)))
(with customer =cus))

do ;; This match 1s really a type-check, so let descriptor try.
(reply-to cus (ask d m)))

(otherwise (1s something do (complain (a no-match))))))

This abstraction is similar to eval-matching-handler, but is for those handler

groups appearing after the first. The difference is that this abstraction will not try

the default handlers again.

(define (new eval-matching-handlerwithout-defaults
(with handler-groups shgs)
(with descriptor =d)
(with state =s)
(with environment =ce)
(with communication =com)
(with self =me))

(case-for hgs
(1s [] do (complain (a no-match)))
(1s (a sequence (with first =f) (with rest =r)) do

(case-for (new f1nd-and-eval-w1nn1ng-hand1er
(with handler-sequence f)
(with environment ce)
(with communication com)
(with state a))

(1s =x do (reply x))
(complaint (a no-match) do

(reply (new eval-match1ng-hand1er-w1thout-defau1ts
(with handler-groups r)
(with descriptor d)
(with state s)
(with creation-environment ce)
(with communication com)
(with self me))))))))

191

r

Ibis abstraction attempts to find and evaluate a handler for the incoming

communication. It looks for it in a single handler group, which is represented as a

sequence of handlers.
(define (new find-and-eval-winning-handler

(with handler-sequence =hs)
(with environment =ce)
(with communication =c)
(with state =s))

(case-for hs
(1s [] do (complain (a no-match)))
(is (a sequence (with first =f) (with rest =r)) do

(case-for (new match-handler (with handler f) (with communication c))
(1s (a successful-match

(with bindings =b1n)
(with body =bod)) do

(reply (new eval-handler-body
(with state s)
(with body bod)
(with communication c)
(with environment

(new environment (with primary bin)
(with secondary ce))))))

(1s (a falled-match) do
(reply (new f1nd-and-eval-w1nn1ng-hand1er

(with handler-sequence r)
(with environment ce)
(with communication c)
(with state s))))))))

This abstraction attempts to match a communication handler with an

incoming communication. The representation of a communication handler is a

sequence with three elements, a keyword, a pattern, and a body.

192

r
(define (new mutch-handler

(with handler =nan)
(with communication = com))

(case-for nan
(1s [=key spat -bod] do

(case-for key
(1s '1s-commun1cat1on do

(case-for (ask pat (a match
(with bindings (new empty-layer))
(with object com)))

(1s (a successful-match (with bindings =b1n)) do
(reply (a successful-match

(with bindings bin)
(with body bod))))

(1s (a falled-match) do (complain (a falled-match)))))
(1s '1s-request do

(case-for com
(1s (a request (with message =msg)) do

(case-for (ask pat (a match
(with bindings (new empty-1 aye'-))
(with object msg)))

(1s (a successful-match (with bindings =b1n)) do
(reply (a successful-match

(with bindings bin)
(with body bod))))

(1s (a falled-match) do (complain (a falled-match)))))
(otherwise (1s something do (complain (a falled-match))))))

(1» 'Is-reply do
(case-for com

(1s (a reply (with message —msg)) do
(case-for (ask pat (a match

(with bindings (new empty-layer))
(with object msg)))

(1s (a successful-match (with bindings =b1n)) do
(reply (a successful-match

(with bindings bin)
(with body bod))))

(1s (a falled-match) do (complain (a falled-match)))))
(otherwise (1s something do (complain (a falled-match))))))

(1s '1s-comp1a1nt do
(case-for com

(1s (a complaint (with message =msg)) do
(case-for (ask pat (a match

(with bindings (new empty-layer))
(with object msg)))

(1s (a successful-match (with bindings =b1n)) do
(reply (a successful-match

(with bindings bin)
(with body bod))))

(Is (a fallod-match) do (complain (a falled-match)))))
(otherwise (1s something do (complain (a falled-match))))))

193

. ••» • _

•' •' - " —••- ' '- J

 ' "

^

D.III.5 EvaluatingComposite Expression Bodies

When composite constructs such as case-for, one-of, and let are used as

expressions, die commands in their bodies are evaluated by the eval-expression-body

abstraction. It calls eval-command-scquence to evaluate the body, then calls

process-expression-effects to condense the result into a single send-effect.
(define (new eval-expression-body

(with command-sequence =cs)
(with environment =e)
(with communication =c)
(with state =s))

(case-for (new process-expression-effects
(with environment e)
(with effects

(new eval-command-sequence
(with command-sequence cs)
(with environment e)
(with communication c)
(with state s))))

(1s (a send-effect (with communication com)) do (send com))
(otherwise (Is something do (complain (a failure))))))

This abstraction processes a sequence of effects from the evaluation of a body

of commands. It assumes the context is for a construct which has been used as an

expression. There should be no become-efTect. There should be exactly one

send-effect.
(define (new process-expression-effects

(with effect-sequence =es)
(with environment =env))

(case-for es
(1s (a send-effect (with communication =c)) do (reply es))
(1s (a completed-command-effect) do (reply es))
(1s (a become-effect) do (complain es))
(1s (a send-effect) do (complain es))
(1s [] do (reply []))
(1s (a sequence (with first =f) (with rest =r)) do

(case-for (new process-expression-effects (with effect-sequence f)
(with environment env))

(1s (a send-effect (with communication =c)) do
(case-for (new process-expression-effects (with effect-sequence r)

(with environment env))
(1s (a send-effect) do (complain (a failure)))
(otherwise (1s something do (reply (a send-effect

(with communication c)))))))
(otherwise (1s something do (reply (new process-expression-effects

(with effect-sequence r)
(with environment env)))))))))

194

- - — •--• — - , , :- •—- ••

1).!().[) Evaluating Communication Handler Ituüios

The process of evaluating a communication handler body consists of

evaluating its body. This transforms a sequence of commands into a sequence of

effects, which we the process with process-handler-effects.
(define (new eval-handlerbody

(with state =s)
(with communication =c)
(with environment =e)
(with body sb))

(reply (new process-handler-effects
(with effect-sequence

(new eval-command-sequence
(with command-sequence b)
(with environment e)
(with communication c)
(with state s))))))

This abstraction processes a sequence of effects from the evaluation of a

communication handler body. No more than one become-effect should be

encountered.
; 'es might be just an effect, Instead of a sequence of effects,
(define (new process-handler-effects

(with effect-sequence =es))
(case-for es

(1s (a completed-command-effect) do (reply es))
(1s (a send-effect (with communication scorn) (with target =tar)) do

(send-to tar com)
(reply (a completed-command-effect)))

(1s (a become-effect (with replacement-actor =n)) do (reply es))
(1s [] do (reply (a completed-command-effect)))
(Is (a sequence (with first =f) (with rest =r)) do

(case-for (new process-handler-effects
(with effect-sequence f))

(1s (a become-effect (with replacement-actor = ra)) do
(case-for (new process-handler-effects

(with effect-sequence r))
(1s (a become-effect) do (complain (a failure)))
(1s (a completed-command-effect) do

(reply (a become-effect (with replacement-actor ra))))))
(1s (a completed-command-effect) do

(reply (new process-handler-effects
(with effect-sequence r))))))))

195

•v-irnn r it'in

—-- ""• • '" —

D.I(1.7 Evaluating a Command Sequence

The evaluation of a sequence of commands produces a sequence of effects.
(define (new eval-command-sequence

(with command-sequence =cs)
(with environment =env)
(with communication =com)
(with state =s))

(case-for cs
(1s [] do (reply []))
(1s (a sequence (with first =f) (with rest =r)) do

(reply (new sequence
(with first (a command-eval

(with environment env)
(with communication com)

/ (with state s)))
(with rest (new eval-command-sequence

(with command-sequence r)
(with environment env)
(with communication com)
(with state s))))))))

1%

,-i. " ••-*•- •~

—

Appendix E

Pre-Defined Names, Actors, and Protocols

When a user first encounters an Act2 listener, there will already be an

environment associated with the listener. This environment will contain mappings

from a number of standard identifiers to useful actors. This initial community of

actors serves as a foundation upon which one can build useful actor communities of

his own. The following table describes the actors in this standard initial

environment. It may not be wise to rebind some of these names in your

environment, or in computations.

An actor which behaves like a logical value of truth. true

false An actor which behaves like a logical value of falsity.

standard-uct2-evaluat'wn-environtncnt
This is the environment currently associated with the listener.
The defname expression extends this environment

standard-act 2 -expressions
An environment used for parsing. It is a mapping from symbols
which serve as expression keywords to parsers which can create
abstract syntax actors from a list-structure representation of the
expression. The defcxpression expression extends this
environment

standard-actl-commands
An environment used for parsing. It is a mapping from symbols
which serve as command keywords to parsers which can create
abstract syntax actors from a list-structure representation of the
command. The defcommand expression extends this
environment

197

——•—•

standard-act2-initial-cvaluation-environment
An environment containing the pre-defined symbols for Act2.
This environment may be shared by other users and should not
be extended. It serves as a secondary environment for
standard-act2-evaluation-environment, which can be extended at
will.

standard-act2-initial-expressions
An environment containing standard expression keyword/parser
mappings. It serves as a secondary environment for
standard-act2-expressions, and might be shared among different
users. Customizations should be installed by extending
standard-act2-expressions, and standard-act2-inirial-expressions
should only be used for reference.

standard-actl-initial-commands
An environment containing standard command keyword/parser
mappings. It serves as a secondary environment for
standard-act2-commands, and might be shared among different
users. Customizations should be installed by extending
standard-act!-commands, and standard-act2-initial-commands
should only be used for reference.

In addition, a number of identifiers are bound to atomic descriptions for the

concepts of each of the instance descriptions used as messages in the standard

communication protocols described below. These include: abs, addl, are-you,

attribute, become-effect, command-compile, command-eval, communication,

compile, complaint, completed-command-effect, concept, concept-for-instance-

description, converse-match, could-not-find, creation-info, evenp, expression-

compile, expression-eval, failed-match, failure, found-case-for-body, grow, if,

install-implementation, installation, lookup, make-descriptor, match, match-

compile, merge-attributes, minus, minusp, name, oddp, plusp, present, process-

communication, ready-effect, reply, request, requisition, send-effect, sequence,

something, successful-match, summarize-implementation, zerop, =,>,> = ,>,<,

< = ,<,+,-,*,//, and t.

198

*£ZL j*i.~

—-

E.I Common Protocol for All Actors

All actors Act2 deals with should handle requests with the following messages.

Actors created with any variation of the Act2 create expression are provided with

handlers for these communications, by default

(a • (»1th operand ...))
Reply with a truth value indicating whether or not you and the
operand are "the same actor". The exact behavior expected
depends upon whether or not the actors are serialized, and upon
the sophistication of the actor making the comparison.

(an are-you (with what ...))
Reply with a truth value indicating whether or not you know
yourself to be an instance of the specified concept. The what is
often a symbol, as in (an are-you (with what 'sequence)).

(a match (with object ...) (with bindings ...))
Reply either with (a falled-match) or
(a successful-match (with bindings ...)), depending upon
whether you as a pattern match the object, given the specified
symbol-to-actor bindings. A successful match might involve
extending the set of bindings.

(a converse-match (with pattern ...) (with bindings ...))
Reply either with (a falled-match) or
(a successful-match (with bindings ...)). depending upon
whether the pattern matches you, given the bindings.

E.2 Surface Syntax Actors

Act2 expressions are read in by an Act2 listener as list structure, symbols, and

numbers. Immediately after reading in such a surface syntax actor, the listener asks

it to parse itself as an expression. It may, in turn, ask surface syntax actors within

itself to parse themselves either as expressions or as commands. The result of this

parsing process is expected to be an abstract syntax actor.

199

r- •• -" '"•"" •••"• •'" —

(a parse-yourself-as-express1on

(with expression-keywords ...)

(with command-keywords ...))

Reply with an abstract syntax actor representing the expression
you denote, otherwise complain. Lists can represent a variety of
expressions, so they make use of the expression-keywords
environment. The list will scan itself from left to right, looking
for a symbol which serves as a keyword. Keywords are symbols
which are bound to parsers in the expression-keywords
environment. When it has found a parser, the list asks it to parse
the list into an abstract syntax actor using the keyword
environments. Notice that the language can be extended
syntactically simply by adding new bindings to these keyword
environments.

(a parse-yourself-as-command

(with expression-keywords ...)

(with command-keywords ...))

Reply with an abstract syntax actor representing the command
you denote, otherwise complain. The parsing process is very
similar to that for expressions.

E.3 Parsers

Parsers in Act2 are used to help parse list structure, as indicated immediately

above. They accept a list which represents Act2 source code, as well as

environments in which keywords are bound to parsers. Parsing a list will typically

involve asking elements in the list to parse themselves either as expressions or as

commands.

(an expression-parse
(with source ...)
(with expression-keywords ...)

(with command-keywords ...))

If possible, parse the list structure presented as the source into an
abstract syntax actor representing one of the particular kinds of

200

mM

expressions you were created to purse. If you cannot make sense
of the list structure, complain with a revealing message.

(a command-parse
(with source ...)
(with expression-keywords ...)

(with command-keywords ...))
Try to parse the source list structure into an abstract syntax actor
representing a command.

E.4 Abstract Syntax Actors

Abstract syntax actors represent Act2 expressions and/or commands. When

they are asked to evaluate themselves as such, they perform the actions characteristic

of the constructs they represent.

(an expresslon-eval (with environment ...))
Evaluate yourself as an expression, resolving names in the
environment provided. Respond with a reply containing the
expression value or with a complaint explaining the reason you
cannot successfully produce such a value.

(a command-eval
(with environment ...)
(with communication ...)
(with state ...))
Evaluate yourself as a command, resolving names in the
environment provided. You may use the extra context
information provided in the communication being processed, or
in a description of the actor in whose communication handlers
you appear. Respond with an appropriate effect, such as
(a completed-command-effect),
(a send-effect (with communication ...)),or
(a becoroe-effect (with replacement ...)), indicating
what's been done or what remains to be done.

201

••"• "• "'•"•'•

V..5 Environments and Layers

Environments and layers speak with the following protocol.

(a lookup (with symbol ...))
If you contain a binding of the symbol to some actor, reply with
that actor; if not, complain.

(a present (with symbol ...))
Reply with a truth value indicating whether or not you contain a
binding of the symbol to some actor.

(a grow (with symbol ...) (with value ...))
Extend yourself with a binding of the symbol to the value, then
reply with the resulting environment or layer. Environments are
serialized and reply with (a changed version of) themselves.
Layers are unserialized and reply with a new layer.

E.6 Rock-Bottom Numbers

Rock-bottom numbers obey the common protocols, the protocols for surface

syntax actors and for abstract syntax actors, as well as the protocols below.

(a + (with operand ...))
Reply with the number which is the sum of yourself and the
operand. Other arithmetic operations understood are:
subtraction (-), multiplication (*), division (//, -*-),
exponentiation (t), maximization (max), minimization (min).

(a < (with operand ...))
Reply with a truth value indicating whether or not you consider
yourself "less than" the operand. Other relational operations
understood are: greater than (>), equality (=), greater than or
equal (> = ,>), less than or equal (< =, <).

(an are-you (w1t*i what ...))
Rock-bottom numbers understand the concepts: ' number,
'Integer, 'real, 'whole-number,and 'natural-number.

202

. ;J

F,.7 Symbols

Primitive symbols obey the common protocols, the protocols for surface

syntax actors and for abstract syntax actors, as well as the protocols below. The

special symbol, T, also behaves as the logical truth value representing validity. The

special symbol, NIL, also behaves as the logical truth value representing falsity, and

as an empty list or sequence.

E.8 Sequences and Lists

Sequences and lists represent linearly-ordered collections of actors. They

obey the common protocols, the protocols for surface syntax actors and for abstract

syntax actors, as well as the protocols below.

(a first) Reply with the first element of the list or sequence. Complain if
you are an empty list.

(a rest) Reply with the list or sequence consisting of all elements except
the first. Complain if you are an empty list.

(an nth (with number ...))
Reply with the number* element in the list or sequence.
Complain if there is no such element.

E.9 Atomic Descriptions

Atomic descriptions serve as concepts for instance descriptions, and as an

organizational tool for the Act2 implementation. They obey the common protocols,

as well as the protocols below.

(an Install-Implamentation

(with environment ...)
(with creation-pattern ...)

203

•

a,., PI .w —

(with creation-expression ...))
Install the implementation information provided in yourself, for
future reference. Reply with an indication that you have done so.

(a summar1ze-1mp1ementat1on)
Reply with a summary of the implementation information
previously installed within you. Encapsulate that information in
an instance description of the form:
(an Installation

(with expression ...)
(with environment ...)
(with pattern ...))

(a-concept-for-1nstahce-descr1pt1on)
Reply with a concept appropriate for an instance description
being created. The reply contains either yourself or your name,
depending upon what your creation information indicates.

(an are-you (with what ...))
Recognizes concepts 'atomic-description, 'description, and
'concept.

E.10 Instance Descriptions

Instance descriptions obey the common protocols, as well as the protocols

below. Expect the set of protocols obeyed by descriptions in general to increase

when inheritance and deduction mechanisms are embedded in Act2.

(a make-descriptor (with environment ...))
Reply with an instance description which has the same concept as
you do, but which has no attributions. This is typically used for
extracting type information for an actor from a description of it,
which was used in its creation.

(an are-you (with what ...))
Recognizes the concepts 'instance-description and
'description.

204

;U

Appendix F

Other Language Issues

F.l Lexical Scoping

Act2 implements lexical scoping of free identifiers in abstraction definitions.

These are conceptually more appropriate for programmers in general [Sussman and

Steele 75, Church 41, Landin 64]. It has the property of referential transparency.

That is, if a programmer defines an abstraction with free variables, those free

identifiers are resolved in the definition environment. There will be no accidental

name conflicts with code which instantiates the abstraction [Sussman and Steele 75].

Lexical scoping and static binding are essential for controlled sharing and

authentication. They guarantee that the expressions denoting patterns in an

abstraction definition are evaluated in the definition environment. The atomic

descriptions used for the concepts will be those in the definition environment. Only

those atomic descriptions conforming to those will match, so our authentication

mechanism is preserved. If free identifiers were bound dynamically, as in Lisp,

these authentication mechanisms would not work.

F.2 Aliasing

Act2 realizes the actor computational model, in which actors are independent

virtual computational agents. Identifiers in Act2 serve as names for denoting actors,

and not as information containers, such as identifiers in languages such as Fortran.

A single actor can be referred to with different names in a computation. Modern

object-oriented languages tend to favor this approach of using identifiers as names.

205

r* .. m ijwn »pun m* IJIIU JJIJ.IH mi !•'•

rather than as containers [Liskov, et al 81, Ingalls 78].

The notion of sharing fostered by this view of identifiers has further

implications. There is no need to distinguish between parameter-passing

techniques. Container-oriented languages have notions of call by reference, call by

value, etc., which determine the relationship between identifiers used as formal and

as actual parameters. These typically affect the meaning of assignment within the

abstraction body. In Act2, identifiers are names, and there are no assignment

commands, so this problem does not arise. The parameter-passing semantics are

those of call-by-sharing, as in Clu [Liskov, et al 81].

F.3 No Identifier Lifetime Problems

Act2 has no lifetime, or dangling reference, problems. Actors exist as long as

they are accessible, so no dangling references can occur. Act2 inherits this property

from the underlying Apiary architecture, which is responsible for storage

management. The Apiary performs garbage collections to reclaim storage associated

with inaccessible actors. This is a major benefit for Act2 programmers, because they

do not need to be concerned with allocation and deallocation of storage.

Programmers using languages without garbage collection typically spend a large

fraction of their time thinking about storage management in their programs. Act2

programmers are spared from this time-consuming activity.

206

i. 1 ~r -~. UliHiliiM

 ,

F.4 Context Sensitivity

Act2 contains several context-sensitive commands and expressions, to increase

the conciseness, readability, and programmability of the language. Some were

introduced into the language in order to reduce the verbosity of the language by

omitting information which is obvious to a reader, or which is available form the

local context. This also is very convenient for the writer of Act2 code.

For example, a create expression appearing as an abstraction declaration, such

as
(define (new checking-account (with balance =b) (with owner so))

(create ...))

becomes associated with a description, (a checking-account), which serves as its

"type".

The new expression is also context-sensitive. When appearing inside a become

command with the sole effect of changing some acquaintances, without changing its

script, it needs only to mention those needing change. For example,

(become (new checking-account (with balance 60))), when appearing in a

context such as that above, would be equivalent to

(become (new checking-account (with balance 60) (with owner Charles))).

The become command is also context-sensitive in another way. For it to be

truly context-free, it would have to indicate not only the replacement actor, but also

the actor to replace, which happens to be the one in whose script the become

command appears. No more than one become command can be evaluated in

response to a communication. Also, the become command is context-sensitive in

the sense that it is not allowed to appear in composite-expression bodies.

The reply and complain commands are very context sensitive. The target for

207

— —

"—'• "• — '-'•

the reply or complaint communication is left unspecified and must be identified by

Act2 from context. When appearing as a command in a request-handler context, a

reply command sends its communication to the customer from the request,

complaints are sent to the request's complaint department

When appearing in the body of a composite expression, a reply or complaint

command designates a reply or complaint to the evaluation of the expression.

Exactly one must be evaluated in the evaluation of the expression.

Sponsors, the resource management mechanisms, are usually handled entirely

by context. Typically, the sponsor contained in the communication being processed

pays for the processing ofthat communication. None of the constructs explicitly

mention sponsors, except the using-sponsor construct, which works by affecting the

context of the commands it contains, and the ls-commun1cat1on variation of

communication handlers, which allows the programmer to have a pattern which will

extract the sponsor during a pattern-match.

F.5 Compilation fits into Interactive Framework

Act2 treats compilation purely as an optimization technique. The ideal is that

programmers should not be able to tell the difference between compiled and

uncompiled code. Separate compilation is supported at the abstraction level. The

protocol for compilation is, in the case of factorial,

(ask factorial (a compile)).

208

"*" •*—"•

Bibliography

[Attardi, Simi 81]
Attardi, G. and Simi, M.
Semantics of Inheritance and Attributions in the Description System Omega.
In Proceedings of IJC A181. 1JCA1, Vancouver, B. C, Canada, August, 1981.

[Backus 78]
Backus, J.
Can Programming be Liberated from the von Neumann Style? A Functional

Style and Its Algebra of Programs.
Communications of the ACM 21(8):613-641, August, 1978.

[Barber 82]
Barber, G. R.
Office Semantics.
PhD thesis, Massachusetts Institute of Technology, 1982.

[Church 41]
Church, A.
The Calculi of Lambda-Conversion.
In Annals of Mathematics Studies Number 6. Princeton University Press,

1941.

[Clinger 81a]
Clinger, W.D.
Foundations of Actor Semantics.
PhD thesis, Massachusetts Institute of Technology, May, 1981.
Available as MIT AI Lab TR 633

[Clinger 81b]
Clinger, W. D.
Foundations of Actor Semantics.
AI-TR- 633, MIT Artificial Intelligence Laboratory, May, 1981.

209

— '•— '—

r
[Dennis 81]

Dennis, J.B.
Data Should Not Change: A Model for a Computer System.
Available as MIT Laboratory for Computer Science Computer Structures

Group Memo 209.

[G'Jttag, Horowitz and Musser 76]
Guttag, J.V., E. Horowitz, and D.R. Musser.
Abstract Data Types and Software Validation.
Technical Report RR-76/48, USC/Information Sciences Institute, August,

1976.

[Hewitt 77]
Hewitt C.
Viewing Control Structures as Patterns of Passing Messages.
Artificial Intelligence 8:323-364,1977.
Also available as MIT Al Memo 410

[Hewitt 80]
Hewitt C E.
The Apiary Network Architecture for Knowledgeable Systems.
In Conference Record of the 1980 Lisp Conference. Stanford University,

Stanford, California, August, 1980.

[Hewitt and Attardi 81]
Hewitt, C.E. and G. Attardi.
Guardians for Concurrent Systems.
Draft of MIT Artificial Intelligence Laboratory memo.

[Hewitt and Baker 78]
Hewitt, C.E., and H. Baker.
Actors and Continuous Functionals.
In Neuhold, editor, Formal Description of Programming Concepts. North

Holland, 1978.
Also available as MIT/LCS/TR-194

[Hewitt and Smith 75]
Hewitt, C, and B. Smith.
Towards a Programming Apprentice.
IEEE Transactions on Software Engineering SE-l(l), march, 1975.

210

I

r
[Hewitt, Attardi, Ueberman 79]

Hewitt C, Attardi C, and Lieberman H.
Specifying and Proving Properties of Guardians for Distributed Systems.
In Proceedings of the Conference on Semantics of Concurrent Computation.

1NRIA, Evian, France, July, 1979.

[Hewitt, Attardi, Simi 80]
Hewitt, C, Attardi, G., and Simi, M.
Knowledge Embedding with a Description System.
In Proceedings of the First National Annual Conference on Artificial

Intelligence. American Association for Artificial Intelligence, August,
1980.

[Hewitt, de Jong 82]
Hewitt, G, de Jong, P.
Open Systems.
In Brodie, M. L., Mylopoulos, J. L., Schmidt, J. W., editor, Perspectives on

Conceptual Modeling. Springer-Verlag, 1982.

[Ingalls 78]
Ingalls, D.H.H.
The Smalltalk-76 Programming System: Design and Implementation.
In Conference Record of the Fifth Annual ACM Symposium on Principles of

Programming Languages. Association for Computing Machinery, 1978.

[Jefferson, Sowizral 82]
Jefferson, D., Sowizral, H.
Fast Concurrent Simulation Using the Time Warp Mechanism, Part I: Local

Control.
Technical Report N-1906-AF, RAND, December, 1982.

[Kerns 80]
Kerns, B.S.
Towards a Better Definition of Transactions.
Available as MIT Al Memo number 609.

[Kornfeld 79]
Kornfeld, W.
Using Parallel Processing for Problem Solving.
Al Memo 561, MIT, December, 1979.

211

uu «L-*~~. ..

•• ' •' — '

[Kornfeld 82]
Kornfeld, W.
Concepts in Parallel Problem Solving.
PhD thesis, Massachusetts Institute of Technology, 1982.

[Kornfeld, Hewitt 81]
Kornfeld, W. A. and Hewitt, C.
The Scientific Community Metaphor.
IEEE Transactions on Systems, Man, and Cybernetics SMC-ll(l), January,

1981.

[Landin 64]
Landin, P.J.
The Mechanical Evaluation of Expressions.
The Computer Journal 6(4), January, 1964.

[Lieberman 81a]
Lieberman, H.
A Preview ofAct-1.
A.l. Memo 625, MIT Artificial Intelligence Laboratory, 1981.

[Lieberman 81b]
Lieberman, H.
Thinking About Lots of Things At Once Without Getting Confused:

Parallelism in Act-I.
A.l. Memo 626, MIT Artificial Intelligence Laboratory, 1981.

[Lieberman 82]
Lieberman, H.
Personal communication.

[Lieberman 83]
Lieberman, H.
An Object-Oriented Simulator for the Apiary.
Draft of MIT Artificial Intelligence Laboratory memo.

[Lieberman and Hewitt 83]
Lieberman, H., and C. Hewitt
A Real Time Garbage Collector Based on the Lifetimes of Objects.
Communications of the ACM, June, 1983.
Also available as MIT AI Memo 569A

212

»*•*""* • ^- - - -fcri—••• •--•--

[Liskov 72]
Liskov, B.H.
A Design Methodology for Reliable Software Systems.
AFIPS Conference Proceedings 411:191-199,1972.
FJCC

(Liskov, et al 81]
G. Goos and J. Hartmanis, editor.
Lecture Notes in Computer Science. Volume 114: CLU Reference Manual.
Springer-Verlag, New York', 1981.
Also available as MIT LCS TR 225, October 1979.

[Sandewall 80]
Sandewall, E.
Programming in the Interactive Environment: the Lisp Experience.
Computing Surveys 10(1), March, 1980.

[Sussman and Steele 75]
Sussman, G.J. and G.L. Steele.
SCHEME: An Interpreter for Extended Lambda Calculus.
Available as MIT Al Memo 349

rrheriault 82]
Theriault, D.
A Primer for the Actl Language.
A.I. Memo 672, MIT Artificial Intelligence Laboratory, April, 1982.

rTurner 79]
Turner, D.A.
A New Implementation Technique for Applicative Languages.
Software - Practice and Experience 9:31-49,1979.

[Waters 83]
Waters, R.C.
Lets: An Expressional Loop Notation.
Available as MIT AI Memo 680A

[Weinreb and Moon 81]
Weinreb, D., and D. Moon.
Lisp Machine Manual.

213

_-^„ji^MMi
~*~~ t-^-'~.

